Quasicomplemented semilattices
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 11-22 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06A12
@article{AUPO_1990_29_1_a0,
     author = {Chajda, Ivan},
     title = {Quasicomplemented semilattices},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {11--22},
     year = {1990},
     volume = {29},
     number = {1},
     mrnumber = {1144827},
     zbl = {0759.06004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a0/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Quasicomplemented semilattices
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1990
SP  - 11
EP  - 22
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a0/
LA  - en
ID  - AUPO_1990_29_1_a0
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Quasicomplemented semilattices
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1990
%P 11-22
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a0/
%G en
%F AUPO_1990_29_1_a0
Chajda, Ivan. Quasicomplemented semilattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 11-22. http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a0/

[1] Birkhoff G.: Lattice Theory. Amer.Math.Soc.Colloq.Publ. 25, N.Y. 1967 (3-rd edition). | MR | Zbl

[2] Chajda I., Rachůnek J.: Forbidden configurations for distributive and modular ordered sets. Order, to appear. | MR

[3] Grätzer G.: General lattice theory. Basel-Stuttgart 1978. | MR

[4] Larmerová J., Rachůnek J.: Translations of distributive and modular ordered sets. Acta Univ.Palac.Olomouc., to appear. | Zbl

[5] Rachůnek J.: A characterization of o-distributive semilattices. Acta Sci. Math. (Szeged), to appear. | MR | Zbl

[6] Salij V.N.: Lattices with unique complements. Publ. Amer. Math. Soc., Providence, 1988. | MR | Zbl