Quasicomplemented semilattices
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 11-22
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{AUPO_1990_29_1_a0,
author = {Chajda, Ivan},
title = {Quasicomplemented semilattices},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {11--22},
year = {1990},
volume = {29},
number = {1},
mrnumber = {1144827},
zbl = {0759.06004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a0/}
}
Chajda, Ivan. Quasicomplemented semilattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 11-22. http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a0/
[1] Birkhoff G.: Lattice Theory. Amer.Math.Soc.Colloq.Publ. 25, N.Y. 1967 (3-rd edition). | MR | Zbl
[2] Chajda I., Rachůnek J.: Forbidden configurations for distributive and modular ordered sets. Order, to appear. | MR
[3] Grätzer G.: General lattice theory. Basel-Stuttgart 1978. | MR
[4] Larmerová J., Rachůnek J.: Translations of distributive and modular ordered sets. Acta Univ.Palac.Olomouc., to appear. | Zbl
[5] Rachůnek J.: A characterization of o-distributive semilattices. Acta Sci. Math. (Szeged), to appear. | MR | Zbl
[6] Salij V.N.: Lattices with unique complements. Publ. Amer. Math. Soc., Providence, 1988. | MR | Zbl