On the existence of square integrable solutions and their derivatives to fourth and fifth order differential equations
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 28 (1989) no. 1, pp. 65-86 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A30, 34A34
@article{AUPO_1989_28_1_a4,
     author = {Andres, J\'an and Vl\v{c}ek, Vladim{\'\i}r},
     title = {On the existence of square integrable solutions and their derivatives to fourth and fifth order differential equations},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {65--86},
     year = {1989},
     volume = {28},
     number = {1},
     mrnumber = {1053729},
     zbl = {0711.34012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1989_28_1_a4/}
}
TY  - JOUR
AU  - Andres, Ján
AU  - Vlček, Vladimír
TI  - On the existence of square integrable solutions and their derivatives to fourth and fifth order differential equations
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1989
SP  - 65
EP  - 86
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1989_28_1_a4/
LA  - en
ID  - AUPO_1989_28_1_a4
ER  - 
%0 Journal Article
%A Andres, Ján
%A Vlček, Vladimír
%T On the existence of square integrable solutions and their derivatives to fourth and fifth order differential equations
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1989
%P 65-86
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1989_28_1_a4/
%G en
%F AUPO_1989_28_1_a4
Andres, Ján; Vlček, Vladimír. On the existence of square integrable solutions and their derivatives to fourth and fifth order differential equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 28 (1989) no. 1, pp. 65-86. http://geodesic.mathdoc.fr/item/AUPO_1989_28_1_a4/

[1] Andres J.: A useful proposition to nonlinear differential systems with a solution of the prescribed asymptotic properties. Acta UPO 85, Math.XXV (1986), 157-164. | MR | Zbl

[2] Yoshizawa T.: Stability theory by Liapunov’s second method. The Math.Soc.Japan, Tokyo 1966. | MR

[3] Andres J.: Boundedness results to the equation x"* + ax" + g(x)x* + h(x) ■ p(x) without the hypothesis h(x)sgn x -= 0 for |x| > R. Atti Accad.Naz.Lincei 80, 5 (1986), 533-539. | MR | Zbl

[4] Voráček J.: Über D’-divergente Lösungen der Differentialgleichung x(n) ■ f(x,x',...,x(n-1);t). Acta UPO 41 (1973), 83-89. | MR

[5] Vlček V.: On the boundedness of solutions of a certain fourth-order nonlinear differential equation. Acta UPO 89, Math. XXVII, Vol. 91 (1988), (in print). | MR | Zbl

[6] Andres J.: Boundedness of solutions of the third order differential equation with oscillatory restoring and forcing terms. Czech.Math.J. 36, 1 (1986), 1-6. | MR | Zbl

[7] Andres J.: Dichotomies for solutions of a certain third order nonlinear differential equation, which is not from the class D. Fasc.Math. 17 (1987), 55-62. | MR

[8] Vlček V.: Boundedness of solutions of a certain fifth-order nonlinear differential equation. (this volume). | Zbl