On the Floquet theory of differential equations $y''=Q(t)y$ with a complex coefficient of the real variable
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 27 (1988) no. 1, pp. 149-183
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C25, 34C99
@article{AUPO_1988_27_1_a9,
     author = {Stan\v{e}k, Svatoslav},
     title = {On the {Floquet} theory of differential equations $y''=Q(t)y$ with a complex coefficient of the real variable},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {149--183},
     year = {1988},
     volume = {27},
     number = {1},
     mrnumber = {1039888},
     zbl = {0699.34039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a9/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - On the Floquet theory of differential equations $y''=Q(t)y$ with a complex coefficient of the real variable
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1988
SP  - 149
EP  - 183
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a9/
LA  - en
ID  - AUPO_1988_27_1_a9
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T On the Floquet theory of differential equations $y''=Q(t)y$ with a complex coefficient of the real variable
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1988
%P 149-183
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a9/
%G en
%F AUPO_1988_27_1_a9
Staněk, Svatoslav. On the Floquet theory of differential equations $y''=Q(t)y$ with a complex coefficient of the real variable. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 27 (1988) no. 1, pp. 149-183. http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a9/

[1] Borůvka O.: Lineare Differential Transformations of the Second Order. The English Univ. Press, London 1971. | MR

[2] Borůvka O.: On central dispersions of the differential equation $y" = q(t)y$ with periodic coefficients. Lecture Notes in Mathematics, 415 (1974), 47-60. | MR

[3] Borůvka O.: Sur les blocs des équations différentielles $y" = q(t)y$ aux coefficients périodiques. Rend. di Mat. (2), 8 (1975), 519-532. | MR

[4] Borůvka O.: Sur quelques compléments à la théorie de Floquet pour les équations différentielles du deuxièma ordre. Ann.Mat.Pura Appl. S.IV, CII (1975), 71-77. | MR

[5] Бopyвкa O.: Teopия глoбaльныx cвoйcтв oбыкнoвeнныx лuнeйныx диффepeнциaльныx ypaвнeний втopoгo nopядкa. Диффepeнциaльныe ypaвнeния, Но. 8, т. 12, 1976, 1347-1383.

[6] Borůvka O.: Sur les blocs des équations différentielles linéaires du deuxième ordre et leurs transformations. Časopis pro pěstování matematiky, 111 (1986), 78-88. | MR | Zbl

[7] Magnus W., Winkler S.: Hill’s Equation. Interscience Publishers, New York, 1966. | MR | Zbl

[8] Neuman F.: Note on bounded non-periodic solutions of second-order linear differential equations with periodic coefficients. Math. Nach. 39 (1969), 217-222. | MR | Zbl

[9] Neuman F., Staněk S.: On the structure of second-order periodic differential equations with given characteristic multipliers. Arch. Math. (Brno), XIII (1977), 149-157. | MR

[10] Плис В. А.: Нелокальные проблемы теории колебаний. Издательство Наука, Москва 1964. | Zbl

[11] Staněk S.: A note on the disconjugate linear differential equations of the second order with periodic coefficients. Acta Univ. Palackianae Olomucensis, F.R.N., Vol. 61, 1979, 93-101. | MR

[12] Staněk S.: On limit properties of phases and of central dispersions in the oscillatory equation $y" = q(t)y$ with a periodic coefficient. Acta Univ. Palackiane Olomucensis, F.R.N., Vol.69, 1981, 85-92. | MR

[13] Staněk S.: A phase of the differential equation $y" = Q(t)y$ with a complex coefficient $Q$ of a real variable. Acta Univ. Palackianae Olomucensis, F.R.N., Mathematica XXV, vol. 85, 1986, 57-73. | MR

[14] Staněk S.: On a transformation of solutions of the differential equation $y" = Q(t)y$ with a complex coefficient $Q$ of a real variable. Acta Univ. Palackianae Olomucensis. Math. XXVI., Vol. 88, 1987 | MR | Zbl

[15] Swanson C. A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York and London 1968. | MR | Zbl