On a certain class of always convergent sequences and the Rayleigh quotient iterations
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 27 (1988) no. 1, pp. 85-90
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 40A05, 46E30, 47A10, 65J99
@article{AUPO_1988_27_1_a6,
     author = {Kojeck\'y, Tom\'a\v{s}},
     title = {On a certain class of always convergent sequences and the {Rayleigh} quotient iterations},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {85--90},
     year = {1988},
     volume = {27},
     number = {1},
     mrnumber = {1039885},
     zbl = {0726.47001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a6/}
}
TY  - JOUR
AU  - Kojecký, Tomáš
TI  - On a certain class of always convergent sequences and the Rayleigh quotient iterations
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1988
SP  - 85
EP  - 90
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a6/
LA  - en
ID  - AUPO_1988_27_1_a6
ER  - 
%0 Journal Article
%A Kojecký, Tomáš
%T On a certain class of always convergent sequences and the Rayleigh quotient iterations
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1988
%P 85-90
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a6/
%G en
%F AUPO_1988_27_1_a6
Kojecký, Tomáš. On a certain class of always convergent sequences and the Rayleigh quotient iterations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 27 (1988) no. 1, pp. 85-90. http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a6/

[1] Bourbaki N.: Integrirovanie. Nauka, Moskva 1967. | MR | Zbl

[2] Dunford N., Schwartz J. T.: Linejnye operatory I, II. Mir, Moskva 1962, 1966. | MR

[3] Rudin W.: Principles of mathematical analysis. Mc Graw-Hill, Inc. New York 1964. | MR | Zbl

[4] Rudin W.: Real and complex analysis. Mc Graw-Hill, Inc. New York І974. | Zbl

[5] Kojecký T.: Some results about convergence of Kellogg's iterations in eigenvalue problems. Czech. Math. Jouгnal (to appear).

[6] Kojecký T.: Iterační procesy Kelloggova typu. kandidátská disertační práce, Olomouc 1981.

[7] Kolomý J.: Approximate determination of eigenvalues and eigenvectors of self-adjoint operators. Ann. Math. Pol 38 (1980). | MR