Asymptotic properties of solutions of a certain third-order differential equation with an oscillatory restoring term
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 27 (1988) no. 1, pp. 201-210
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C10, 34E05
@article{AUPO_1988_27_1_a11,
     author = {Andres, J\'an},
     title = {Asymptotic properties of solutions of a certain third-order differential equation with an oscillatory restoring term},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {201--210},
     year = {1988},
     volume = {27},
     number = {1},
     mrnumber = {1039890},
     zbl = {0701.34070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a11/}
}
TY  - JOUR
AU  - Andres, Ján
TI  - Asymptotic properties of solutions of a certain third-order differential equation with an oscillatory restoring term
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1988
SP  - 201
EP  - 210
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a11/
LA  - en
ID  - AUPO_1988_27_1_a11
ER  - 
%0 Journal Article
%A Andres, Ján
%T Asymptotic properties of solutions of a certain third-order differential equation with an oscillatory restoring term
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1988
%P 201-210
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a11/
%G en
%F AUPO_1988_27_1_a11
Andres, Ján. Asymptotic properties of solutions of a certain third-order differential equation with an oscillatory restoring term. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 27 (1988) no. 1, pp. 201-210. http://geodesic.mathdoc.fr/item/AUPO_1988_27_1_a11/

[1] Swick K. E.: Asymptotic behavior of the solutions of certain third order differential equations. SIAM J. Appl. Math. 19, 1, 1970, 96-102. | MR | Zbl

[2] Yoshizawa T.: Stability theory by Liapunov's second method. Math. Soc. Japan, Tokyo 1966. | MR

[3] Andres J.: On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order. Čas.pěst.mat. 3, 1986, 225-229. | MR

[4] Voráček J.: Über eine nichtlineare Differentialgleichung dritter Ordnung. Czech. Math. J. 20, 95, 1970, 207-219. | MR

[5] Coppel W. A.: Stability and asymptotic behavior of differential equations. D.C. Heath, Boston 1965. | MR | Zbl

[б] Barbalat I.: Systèmes ďéquations différencielles ďoscillations non linéaires. Rev. Math. Pures Appl. 4, 2, 1959, 267-270. | MR

[7] Andres O.: Boundedness of solutions of the third order differential equation with the oscillatory restoring and forcing terms. Czech. Math. J., 36, 1, 1986, 1-6. | MR

[8] Bakaev, Yu. N.: Synchronization properties of the automatic control phase system of the third order. (in Russian). Radiotekh. Elektron. 10, 6, 1965, 1083-1087.

[9] Andres O., Štrunc M.: Lagrange-like stability of local cycles to a certain forced phase-locked loop described by the third-order differential equation. To appear in Rev. Roum. Sci.Techn. 32, 2, 1987, 219-223.