On a transformation of solutions of the differential equation $y'=Q(t)y$ with a complex coefficient $Q$ of a real variable
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 26 (1987) no. 1, pp. 57-83 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A30, 34C20
@article{AUPO_1987_26_1_a4,
     author = {Stan\v{e}k, Svatoslav},
     title = {On a transformation of solutions of the differential equation $y'=Q(t)y$ with a complex coefficient $Q$ of a real variable},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {57--83},
     year = {1987},
     volume = {26},
     number = {1},
     mrnumber = {1033331},
     zbl = {0712.34009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1987_26_1_a4/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - On a transformation of solutions of the differential equation $y'=Q(t)y$ with a complex coefficient $Q$ of a real variable
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1987
SP  - 57
EP  - 83
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1987_26_1_a4/
LA  - en
ID  - AUPO_1987_26_1_a4
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T On a transformation of solutions of the differential equation $y'=Q(t)y$ with a complex coefficient $Q$ of a real variable
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1987
%P 57-83
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1987_26_1_a4/
%G en
%F AUPO_1987_26_1_a4
Staněk, Svatoslav. On a transformation of solutions of the differential equation $y'=Q(t)y$ with a complex coefficient $Q$ of a real variable. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 26 (1987) no. 1, pp. 57-83. http://geodesic.mathdoc.fr/item/AUPO_1987_26_1_a4/

[1] Blanton G., Baker J. А.: Iteration groups generated by $C^\ast$ functions. Аrch. Math. (Brno) 3, XVIII, 1982, 121-128. | MR | Zbl

[2] Borůvka O.: Linear Differential Transformations of the Second Order. The English Univ. Press, London, 1971. | MR

[3] Borůvka O.: Sur les transformations simultanées de deux équations différentielles linéaires du deuxième ordre dans elles-mêmes. Applicable Anal. 1983, 15, No 1-4, 187-200. | MR

[4] Borůvka O.: Sur les sous-groupes planaires des groupes des dispersions des équations différentielles linéaires du deuxième ordre. Proc. Roy. Soc. Edinburgh, 97 A (1984), 35-41. | MR

[5] Borůvka O.: Lectures at the seminar of the Institute of Mathematics of the Czechoslovak Acәdemy of Science in Brno.

[6] Krbiľa J.: Vlastnosti fáz neoscilatorických rovníc y" = q(t)y definovaných pomocou hyperbolických polárných súradnic. Sborník prací VŠD a VUD, Nadas (Praha), 19, (1969), 5-11.

[7] Krbiľa J.: Applikation von parabolischen Phasen der Differentialgleichung y'' = q(t)y. Sborník prací VŠD a VUD, IV. ved. konf., 1.sekcia, 1973, 67-74. | MR

[8] Krbiľa J.: Explicit solutions of several Kummer's nonlinear differential equations. Mat. Čas. 24, 1974, No 4, 343-348. | MR

[9] Krbiľa J., Kříž F.: Transformácia binomických lineárnych diferencialnych rovníc n-tého rádu, ktorých nosiče sú komplexné funkcie reálného argumentu. Práce a štúdie VŠD v Žiline, No 1, 1974, séria mat.-fyz., 77-82. | MR

[10] Staněk S.: On a structure of the intersection of the set of dispersions of two second-order linear differential equations. Acta Univ.Palac.Olomucensis, Fac. rer. nat., vol 73, 1982, 79-85. | MR | Zbl

[11] Staněk S.: On the intersection of the set of solutions of two Kummer's differential equations. Acta Univ. Palac. Olomucensis, Fac. rer. nat., vol. 79, 1984, 25-32. | MR | Zbl

[12] Staněk S.: On the intersection of groups of increasing dispersions of two second order oscillatory differential equations. Acta Univ. Palac. Olomucensis, Fac. rer. nat., vol. 86, Math. XXIV, 1985. 61-66. | MR

[13] Staněk S.: Introducing A phase of the differential equation y'' = Q(t)y with a complex coefficient Q of a real variable. Acta Univ. Palac. Olomucensis, vol. 85, Math. XXIV, 1986, 57-75. | MR

[14] Wilczynski E. J.: Projective differential geometry of curves and ruled surfaces. Leipzig, 1906.