Method of successive approximations for a certain nonlinear third order boundary value problem
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 26 (1987) no. 1, pp. 161-168
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A34, 34A45, 34B15
@article{AUPO_1987_26_1_a10,
     author = {Rusn\'ak, J\'an},
     title = {Method of successive approximations for a certain nonlinear third order boundary value problem},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {161--168},
     year = {1987},
     volume = {26},
     number = {1},
     mrnumber = {1033337},
     zbl = {0707.34019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1987_26_1_a10/}
}
TY  - JOUR
AU  - Rusnák, Ján
TI  - Method of successive approximations for a certain nonlinear third order boundary value problem
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1987
SP  - 161
EP  - 168
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1987_26_1_a10/
LA  - en
ID  - AUPO_1987_26_1_a10
ER  - 
%0 Journal Article
%A Rusnák, Ján
%T Method of successive approximations for a certain nonlinear third order boundary value problem
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1987
%P 161-168
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1987_26_1_a10/
%G en
%F AUPO_1987_26_1_a10
Rusnák, Ján. Method of successive approximations for a certain nonlinear third order boundary value problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 26 (1987) no. 1, pp. 161-168. http://geodesic.mathdoc.fr/item/AUPO_1987_26_1_a10/

[1] Schmitt K.: A nonlinear boundary value problem. J. Diff. Equat. 7, 1970, 527-5Ӡ7. | MR | Zbl

[2] Bellman R.: Monotone operators and nonlinear equations. J. Math. Anal. Appl. 67, 1979, 158-162. | MR | Zbl

[3] Šeda V.: Antitone operators and ordinary differential equations. Czech. Math. J. 31 (106), 1981, 531-553. | MR

[4] Greguš M.: Über das Randwertproblem der n-ten Ordnung in m-Punkten. Acta F.R.N. Univ. Comen. IX. 2. - Mathematica 1964, 49-55. | MR

[5] Greguš M.: Lineárna diferenciálna rovnica tretieho rádu. Veda, Vydavat. Slov. Akad. Vied, 1981. | MR

[6] Rusnák J.: A three-point boundary value problem for third order differential equations. Math. Slovaca 33, І983, 307-320. | MR | Zbl

[7] Rusnák J.: Existence theorems for a certain nonlinear boundary value problem of the third order. Math. Slovaca (to appear). | MR | Zbl