A useful proposition to nonlinear differential systems with a solution of the prescribed asymptotic properties
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 25 (1986) no. 1, pp. 157-164 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A34, 34C11, 34D05
@article{AUPO_1986_25_1_a8,
     author = {Andres, J\'an},
     title = {A useful proposition to nonlinear differential systems with a solution of the prescribed asymptotic properties},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {157--164},
     year = {1986},
     volume = {25},
     number = {1},
     mrnumber = {918373},
     zbl = {0641.34036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1986_25_1_a8/}
}
TY  - JOUR
AU  - Andres, Ján
TI  - A useful proposition to nonlinear differential systems with a solution of the prescribed asymptotic properties
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1986
SP  - 157
EP  - 164
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1986_25_1_a8/
LA  - en
ID  - AUPO_1986_25_1_a8
ER  - 
%0 Journal Article
%A Andres, Ján
%T A useful proposition to nonlinear differential systems with a solution of the prescribed asymptotic properties
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1986
%P 157-164
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1986_25_1_a8/
%G en
%F AUPO_1986_25_1_a8
Andres, Ján. A useful proposition to nonlinear differential systems with a solution of the prescribed asymptotic properties. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 25 (1986) no. 1, pp. 157-164. http://geodesic.mathdoc.fr/item/AUPO_1986_25_1_a8/

[1] Andres J.: Periodic derivative of solutions to nonlinear differential equations. to appear in Czech. Math. J. | MR | Zbl

[2] Andres J.: On the equation x''' + ax'' +bx' + csin x = p(t). to appear in Proceed. Conf. Diff. Eqs. held in Kołobrzeg, 1984.

[3] Fučík S., al.: Spectral Analysis of Nonlinear Operators. Springer, LNM 346, Berlin - Heidelberg - New York, 1973. | MR | Zbl

[4] Horák R., Peřina J.: Private communication.

[5] Krasnoseĺskii M. A.: Translation Operator along Trajectories of Differential Equations. (Russian), Nauka, Moscow, 1966. | MR

[6] Reissig R.: Continue of periodic solutions of the Liénard equation. Constr. Meth. Nonl. BVPs Nonl. Oscill., ed. J. Albrecht, L.Collatz and K. Kirchgässner, Birkhäuser, Basel, 126-133. | MR

[7] Voráček J.: Über D’ -divergente Lösungen der Differentialgleichung $x^(n)= f(x,x',\ldots,x^{(n-1)}; t). Acta UPO 41, 1973, 83-89. | MR