@article{AUPO_1984_23_1_a4,
author = {Stan\v{e}k, Svatoslav},
title = {On the basic second kind central dispersion of $y'=q(t)y$ with an almost periodic coefficient $q$},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {39--44},
year = {1984},
volume = {23},
number = {1},
mrnumber = {837028},
zbl = {0584.34025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1984_23_1_a4/}
}
TY - JOUR AU - Staněk, Svatoslav TI - On the basic second kind central dispersion of $y'=q(t)y$ with an almost periodic coefficient $q$ JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1984 SP - 39 EP - 44 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1984_23_1_a4/ LA - en ID - AUPO_1984_23_1_a4 ER -
%0 Journal Article %A Staněk, Svatoslav %T On the basic second kind central dispersion of $y'=q(t)y$ with an almost periodic coefficient $q$ %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1984 %P 39-44 %V 23 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1984_23_1_a4/ %G en %F AUPO_1984_23_1_a4
Staněk, Svatoslav. On the basic second kind central dispersion of $y'=q(t)y$ with an almost periodic coefficient $q$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 23 (1984) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/AUPO_1984_23_1_a4/
[1] Borůvka O.: Linear Dìfferential Transformations of the Second Order. Tһe English Univ. Press, London, 1971. | Zbl
[2] Бopyвкa O.: Teopия глoбaльныx cвoйcтв oбыкнoвeнныx лuнeйныx диффepeнциaльныx ypaвнeний втopoгo nopядкa. Диффepeнциaльныe ypaвнeния, Но. 8, т. 12, 1976, 1347-1383.
[3] Xapacaxaл B. X.: Пoчmu-nepuoдичecкue peшeния oбыкнoвeнныx диффepeнциaльныx ypaвнeний. Издaтeльcтвo „Hayкa", Aлмa-Aтa, 1970.
[4] Markus L., Moore R. A.: Oscillation and disconjugacy for linear differential equations with almost periodic coefficients. Acta Math., 96, 1956, 99 - 123. | MR | Zbl
[5] Staněk S.: On the basic central dispersion of the differential equation $y" = q(t)y$ with an almost periodic coefficient $q$. Acta Univ. Palackianae Olomucensis, F. R. N., vol. 76, mathematica XXII, 1983, 99-105. | MR