On a structure of second order linear differential equations with periodic coefficients having the same discriminant
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 22 (1983) no. 1, pp. 91-98 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A30, 34C11
@article{AUPO_1983_22_1_a8,
     author = {Stan\v{e}k, Svatoslav},
     title = {On a structure of second order linear differential equations with periodic coefficients having the same discriminant},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {91--98},
     year = {1983},
     volume = {22},
     number = {1},
     mrnumber = {744703},
     zbl = {0584.34004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1983_22_1_a8/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - On a structure of second order linear differential equations with periodic coefficients having the same discriminant
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1983
SP  - 91
EP  - 98
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1983_22_1_a8/
LA  - en
ID  - AUPO_1983_22_1_a8
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T On a structure of second order linear differential equations with periodic coefficients having the same discriminant
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1983
%P 91-98
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1983_22_1_a8/
%G en
%F AUPO_1983_22_1_a8
Staněk, Svatoslav. On a structure of second order linear differential equations with periodic coefficients having the same discriminant. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 22 (1983) no. 1, pp. 91-98. http://geodesic.mathdoc.fr/item/AUPO_1983_22_1_a8/

[1] Arѕсott F. M.: Periodic Differential Equations. Pеrgamon Prеѕѕ, Oxford, 1964.

[2] Borůvka O.: Linear Differential Transformations of the Second Order. Thе Engliѕh Univеrѕitiеѕ Prеѕѕ, London, 1971. | MR

[3] Бopувкa O.: Teopuя глoбaлъныx cвoйcmв oвыкнoвeнныx лuнeйныx дuффepeнцuaлъныx ypaвнeнuй вmopoгo nopядкa. Диффеpенциaльные уpaвнения, No 8, т. XII, 1976, 1346-1383.

[4] Grеguѕ M., Nеuman F., Arѕсott F. M.: Three-point boundary problems in differential equations. J. London Math. Soс. (2), 3, 1971, 429-436. | MR

[5] Hartman P.: Ordinary Differential Equations. (In Ruѕѕian) Moѕсow, 1970. | Zbl

[6] Якубoвич B. A., Стapжинский B. A.: Лuнeйныe дuффepeнцuaлъныe ypaвнeнuя c nepuoдuчecкuм кoзффuцueнmaмu u ux npuлoжeнuя. Издaтельствo „Haукa", Moсквa 1970.

[7] Krbiľa J.: Vlastnosti fáz neoscilatorických rovnic y" = q(t)y definovaných pomocou hyperbolických polárnych súradnic. Sborník praсí VŠD a VŰD, 19, 1969, 5-11.

[8] Krbiľa J.: Application von parabolischen Phasen der Differentialgleichung y" = q(t)y. Sborník prасí VŠD а VÚD, IV vеd. konf., 1. ѕеkсiа, 1973, 67-74. | MR

[9] Krbiľа J.: Explicit solution of several Kummer’s nonlinear differential equations. Mаt. Čаѕ., 24 No. 4, 1974, 343-348. | MR

[10] Mаgnuѕ M., Winklеr S.: Hill’s Equation. Intеrѕсiеnсе Publiѕhеrѕ, Nеw York, 1966.

[11] Mаrkuѕ L., Moorе R. A.: Oscillation and disconjugacy for linear differential equations with almost periodic coefficients. Aсtа Mаth., 96, 1956, 99-123. | MR

[12] Nеumаn F., Stаněk S.: On the structure of second-order periodic differential equations with given characteristic multipliers. Arch. Mаth. (Brno), 3, XIII, 1977, 149-158. | MR

[13] Stаněk S.: Phase and dispersion theory of the differential equation y" = q(t)y in connection with the generalized Floquet theory. Arсh. Mаth. (Brno) 2, XIV, 1978, 109-122. | MR

[14] Stаněk S.: A note on disconjugate linear differential equations of the second order with periodic coefficients. Aсtа Univ. Pаlасkiаnае Olomuсеnѕiѕ F. R. N., 61, 1979, 83-101.