Second derivative linear multistep formula and its stability on the imaginary axis
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 22 (1983) no. 1, pp. 131-142 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A34, 65L05, 65L10
@article{AUPO_1983_22_1_a12,
     author = {Kobza, Ji\v{r}{\'\i}},
     title = {Second derivative linear multistep formula and its stability on the imaginary axis},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {131--142},
     year = {1983},
     volume = {22},
     number = {1},
     mrnumber = {744707},
     zbl = {0563.65048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1983_22_1_a12/}
}
TY  - JOUR
AU  - Kobza, Jiří
TI  - Second derivative linear multistep formula and its stability on the imaginary axis
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1983
SP  - 131
EP  - 142
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1983_22_1_a12/
LA  - en
ID  - AUPO_1983_22_1_a12
ER  - 
%0 Journal Article
%A Kobza, Jiří
%T Second derivative linear multistep formula and its stability on the imaginary axis
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1983
%P 131-142
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1983_22_1_a12/
%G en
%F AUPO_1983_22_1_a12
Kobza, Jiří. Second derivative linear multistep formula and its stability on the imaginary axis. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 22 (1983) no. 1, pp. 131-142. http://geodesic.mathdoc.fr/item/AUPO_1983_22_1_a12/

[1] Cryer C. W.: A new class of highly stable methods; $A_0$-stable methods. BIT 13 (1973), 153-159. | MR | Zbl

[2] Dеkkег K.: Stability of linear multistep methods on the imaginary axis. BIT 21 (1981), 66-79. | MR

[3] Duffin R. J.: Algorithms for classical stability problems. SIАM Rеviеw 11 (1969), 196-213. | MR | Zbl

[4] Gаntmасhеr F. R.: Teorija matric. Moѕkvа 1966.

[5] Jеltѕсh R.: Stability on the imaginary axis and A-stability of linear multistep methods. BIT 18 (1978), 170-174. | MR

[6] Jury E. I.: Inners and stability of dynamic systems. Wilеy, Nеw York 1974 (Ruѕѕiаn trапѕlаtion Moѕсow 1979). | MR | Zbl

[7] Kobzа J.: Metody tipa Adamsa s vtorymi proizvodnymi. Аplikасе matеmаtiky 20 (1975), 389-405.

[8] Kobzа J.: Stability of the second derivative linear multistep formulas. Асtа UPO, F. R. N. - T 53 (1977), 167-184. | MR

[9] Krеiѕѕ H.-O.: Problems with different time scales for ordinary diff. equations. Uppѕаlа Univеrѕity, Dеpt. of Comp. Sсiеnсеѕ, Rеp. No 68, 1977.

[10] Lаmbеrt J. D.: Computational Methods in Ordinary Differential Equations. Wilеy, London 1973.