@article{AUPO_1982_21_1_a6,
author = {Pavl{\'\i}kov\'a, Elena},
title = {Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {69--78},
year = {1982},
volume = {21},
number = {1},
mrnumber = {0702609},
zbl = {0522.34033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1982_21_1_a6/}
}
TY - JOUR AU - Pavlíková, Elena TI - Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$ JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1982 SP - 69 EP - 78 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1982_21_1_a6/ LA - en ID - AUPO_1982_21_1_a6 ER -
%0 Journal Article %A Pavlíková, Elena %T Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$ %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1982 %P 69-78 %V 21 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1982_21_1_a6/ %G en %F AUPO_1982_21_1_a6
Pavlíková, Elena. Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/AUPO_1982_21_1_a6/
[1] M. Háčik: Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation $y'' + q(t)y = 0$ with regard to the basis $\alpha, \beta$. Arch. Math. 8, Brno, (1972), 79-83. | MR
[2] M. Laitoch: L’équation associeé dans la théorie des transformations des équations différentielles du second ordre. Acta Univ. Palack. Olomucensis, TOM 12 (1963), 45-62. | MR | Zbl
[3] L. Lorch M. Muldoon P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions. IV. Canad. Journal of Math., XXIV (1972), 349-368. | MR
[4] E. Pavlíková: Higher monotonicity properties of certain Sturm-Liouville functions. Archivum Mathematicum, Brno, (to appear). | MR
[5] J. Vosmanský: Certain higher monotonicity properties of Bessel functions. Arch. Math. 1, Brno, (1977), 55-64. | MR
[6] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of $y'' + a(t)y' + b(t)y = 0$. Arch. Math. 2, Brno, (1974), 87-102. | MR