Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982) no. 1, pp. 69-78 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A30, 34C10, 34C20
@article{AUPO_1982_21_1_a6,
     author = {Pavl{\'\i}kov\'a, Elena},
     title = {Higher monotonicity properties of  $i$-th derivatives of solutions of  $y'' + a(x) y' + b(x) y = 0$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {69--78},
     year = {1982},
     volume = {21},
     number = {1},
     mrnumber = {0702609},
     zbl = {0522.34033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1982_21_1_a6/}
}
TY  - JOUR
AU  - Pavlíková, Elena
TI  - Higher monotonicity properties of  $i$-th derivatives of solutions of  $y'' + a(x) y' + b(x) y = 0$
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1982
SP  - 69
EP  - 78
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1982_21_1_a6/
LA  - en
ID  - AUPO_1982_21_1_a6
ER  - 
%0 Journal Article
%A Pavlíková, Elena
%T Higher monotonicity properties of  $i$-th derivatives of solutions of  $y'' + a(x) y' + b(x) y = 0$
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1982
%P 69-78
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1982_21_1_a6/
%G en
%F AUPO_1982_21_1_a6
Pavlíková, Elena. Higher monotonicity properties of  $i$-th derivatives of solutions of  $y'' + a(x) y' + b(x) y = 0$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/AUPO_1982_21_1_a6/

[1] M. Háčik: Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation $y'' + q(t)y = 0$ with regard to the basis $\alpha, \beta$. Arch. Math. 8, Brno, (1972), 79-83. | MR

[2] M. Laitoch: L’équation associeé dans la théorie des transformations des équations différentielles du second ordre. Acta Univ. Palack. Olomucensis, TOM 12 (1963), 45-62. | MR | Zbl

[3] L. Lorch M. Muldoon P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions. IV. Canad. Journal of Math., XXIV (1972), 349-368. | MR

[4] E. Pavlíková: Higher monotonicity properties of certain Sturm-Liouville functions. Archivum Mathematicum, Brno, (to appear). | MR

[5] J. Vosmanský: Certain higher monotonicity properties of Bessel functions. Arch. Math. 1, Brno, (1977), 55-64. | MR

[6] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of $y'' + a(t)y' + b(t)y = 0$. Arch. Math. 2, Brno, (1974), 87-102. | MR