@article{AUPO_1981_20_1_a9,
author = {Stan\v{e}k, Svatoslav},
title = {On limit properties of phases and of central dispersions in the oscillatory equation $y'' = q(t) y$ with a periodic coefficient},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {85--92},
year = {1981},
volume = {20},
number = {1},
mrnumber = {0645891},
zbl = {0498.34017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a9/}
}
TY - JOUR AU - Staněk, Svatoslav TI - On limit properties of phases and of central dispersions in the oscillatory equation $y'' = q(t) y$ with a periodic coefficient JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1981 SP - 85 EP - 92 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a9/ LA - en ID - AUPO_1981_20_1_a9 ER -
%0 Journal Article %A Staněk, Svatoslav %T On limit properties of phases and of central dispersions in the oscillatory equation $y'' = q(t) y$ with a periodic coefficient %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1981 %P 85-92 %V 20 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a9/ %G en %F AUPO_1981_20_1_a9
Staněk, Svatoslav. On limit properties of phases and of central dispersions in the oscillatory equation $y'' = q(t) y$ with a periodic coefficient. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 20 (1981) no. 1, pp. 85-92. http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a9/
[1] Borůvka O.: Linear Differential Transformations of the Second Order. English Univ. Press, London, 1971. | MR
[2] Borůvka O.: On central dispersions of the differential equation y" = q(t) y with periodic coefficients. Lecture Notes in Mathematics, 415 (1974), 47-60. | MR
[3] Borůvka O.: Sur les blocs des équations différentielles y" = q(t)y aux coefficients périodique. Rеnd. Mat. 8 (1975), 519-532. | MR
[4] Bоrůvka O.: Sur quelques compléments á la théorie de Floquet pour les équations différentielles du deuxiéme ordre. Ann. Mat. Pura Appl. Ѕ. IV, CII (1975), 71-77.
[5] Боpyвкa O.: Teopuя глoбaлъныx cвoйcmв oбыкнoвeнныx лuнeйныx дuффepeнцuaлъныx ypaвнeнuй вmopoгo nopядкa. Диффepeнциaльныe ypaвнeния, No 8, T. 12, 1976, 1347-1383.
[6] Eндовицкий И. И.: Уcлoвuя ycmoйчuвocmu peшeнuй лuнeйнoгo дuффepeнцuaлънoгo ypaвнeнuя вmopoгo nopядкa c nepuoдuчecкuм кoэффuцueнmoм. Изв. выспшx yч. зaв., мaт., No 5, 1967, 28-33.
[7] Якyбович B. A., Cтapжинский B. M.: Лuнeйныe дuффepeнцuaлъныe ypaвнeнuя c nepuoдuчecкuмu кoэффuцueнmaмu u ux npuлoжeнuя. Изд. „Hayкa", Mосквa 1970.
[8] Magnuѕ W., Winkler Ѕ.: Hill’s Equation. Interѕсienсe Publiѕherѕ, New Yоrk, 1966. | MR
[9] Neuman F.: Note on bounded non-periodic solutions of second-order linear differential equations with periodic coefficients. Math. Naсh. 39 (1969), 217-222. | MR | Zbl