On limit properties of phases and of central dispersions in the oscillatory equation $y'' = q(t) y$ with a periodic coefficient
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 20 (1981) no. 1, pp. 85-92 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B30, 34C10, 34C25
@article{AUPO_1981_20_1_a9,
     author = {Stan\v{e}k, Svatoslav},
     title = {On limit properties of phases and of central dispersions in the oscillatory equation $y'' = q(t) y$ with a periodic coefficient},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {85--92},
     year = {1981},
     volume = {20},
     number = {1},
     mrnumber = {0645891},
     zbl = {0498.34017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a9/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - On limit properties of phases and of central dispersions in the oscillatory equation $y'' = q(t) y$ with a periodic coefficient
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1981
SP  - 85
EP  - 92
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a9/
LA  - en
ID  - AUPO_1981_20_1_a9
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T On limit properties of phases and of central dispersions in the oscillatory equation $y'' = q(t) y$ with a periodic coefficient
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1981
%P 85-92
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a9/
%G en
%F AUPO_1981_20_1_a9
Staněk, Svatoslav. On limit properties of phases and of central dispersions in the oscillatory equation $y'' = q(t) y$ with a periodic coefficient. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 20 (1981) no. 1, pp. 85-92. http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a9/

[1] Borůvka O.: Linear Differential Transformations of the Second Order. English Univ. Press, London, 1971. | MR

[2] Borůvka O.: On central dispersions of the differential equation y" = q(t) y with periodic coefficients. Lecture Notes in Mathematics, 415 (1974), 47-60. | MR

[3] Borůvka O.: Sur les blocs des équations différentielles y" = q(t)y aux coefficients périodique. Rеnd. Mat. 8 (1975), 519-532. | MR

[4] Bоrůvka O.: Sur quelques compléments á la théorie de Floquet pour les équations différentielles du deuxiéme ordre. Ann. Mat. Pura Appl. Ѕ. IV, CII (1975), 71-77.

[5] Боpyвкa O.: Teopuя глoбaлъныx cвoйcmв oбыкнoвeнныx лuнeйныx дuффepeнцuaлъныx ypaвнeнuй вmopoгo nopядкa. Диффepeнциaльныe ypaвнeния, No 8, T. 12, 1976, 1347-1383.

[6] Eндовицкий И. И.: Уcлoвuя ycmoйчuвocmu peшeнuй лuнeйнoгo дuффepeнцuaлънoгo ypaвнeнuя вmopoгo nopядкa c nepuoдuчecкuм кoэффuцueнmoм. Изв. выспшx yч. зaв., мaт., No 5, 1967, 28-33.

[7] Якyбович B. A., Cтapжинский B. M.: Лuнeйныe дuффepeнцuaлъныe ypaвнeнuя c nepuoдuчecкuмu кoэффuцueнmaмu u ux npuлoжeнuя. Изд. „Hayкa", Mосквa 1970.

[8] Magnuѕ W., Winkler Ѕ.: Hill’s Equation. Interѕсienсe Publiѕherѕ, New Yоrk, 1966. | MR

[9] Neuman F.: Note on bounded non-periodic solutions of second-order linear differential equations with periodic coefficients. Math. Naсh. 39 (1969), 217-222. | MR | Zbl