@article{AUPO_1981_20_1_a10,
author = {Stan\v{e}k, Svatoslav},
title = {On some properties of solutions of the second order linear differential equations with periodic coefficients having a common oneparametric continuous group of dispersions},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {93--99},
year = {1981},
volume = {20},
number = {1},
mrnumber = {0645892},
zbl = {0484.34028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a10/}
}
TY - JOUR AU - Staněk, Svatoslav TI - On some properties of solutions of the second order linear differential equations with periodic coefficients having a common oneparametric continuous group of dispersions JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1981 SP - 93 EP - 99 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a10/ LA - en ID - AUPO_1981_20_1_a10 ER -
%0 Journal Article %A Staněk, Svatoslav %T On some properties of solutions of the second order linear differential equations with periodic coefficients having a common oneparametric continuous group of dispersions %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1981 %P 93-99 %V 20 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a10/ %G en %F AUPO_1981_20_1_a10
Staněk, Svatoslav. On some properties of solutions of the second order linear differential equations with periodic coefficients having a common oneparametric continuous group of dispersions. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 20 (1981) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a10/
[1] Borg G.: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Acta Math. 78 (1946), 1-96. | MR | Zbl
[2] Borůvka O.: Linear Differential Transformations of the Second Order. The English Univ. Press, London, 1971. | MR
[3] Боpyвкa O.: Teopuя глoбaлъныx cвoйcmв oбыкнoвeнныx лuнeйныx дuффepeнцuaлъныx ypaвнeнuй вmopoгo nopядкa. Диффepeнциaльныe ypaвнeния, No 8, T. 12, 1976, 1347-1383.
[4] Borůvka O.: Lectures in the seminar of Matematický ústav ČSAV, Brno.
[5] Greguš M., Neuman F., Arscott F.: Three-point boundary value problems in differential equations. J. London Math. Soc. (2), 3 (1971), 429-436. | MR
[6] Hochstadt H.: On the determination for a Hill's equation from its spectrum. Arch. Rational Mech. Anal., 19, No 5 (1965), 353-364. | MR
[7] Якyбович B. A., Cтapжинский B. M.: Лuнeйныe дuффepeнцuaлъныe ypaвнeнuя c nepuoдuчecкuмu кoэффuцueнmaмu u ux npuлoжeнuя. Изд. „Hayкa", Mосквa 1970.
[8] Magnus W., Winkler S.: Hill's Equation. Interscience Publishers, New York, 1966. | MR | Zbl
[9] Neuman F.: On the Liouville transformation. Rend. Mat., Serie VI, 3 (1970), 1-8. | MR | Zbl
[10] Ungar P.: Stable Hill equations. Comm. Pure Appl. Math., XIV (1961), 707-710. | MR | Zbl