On some properties of solutions of the second order linear differential equations with periodic coefficients having a common oneparametric continuous group of dispersions
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 20 (1981) no. 1, pp. 93-99 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A30, 34C10, 34C25
@article{AUPO_1981_20_1_a10,
     author = {Stan\v{e}k, Svatoslav},
     title = {On some properties of solutions of the second order linear differential equations with periodic coefficients having a common oneparametric continuous group of dispersions},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {93--99},
     year = {1981},
     volume = {20},
     number = {1},
     mrnumber = {0645892},
     zbl = {0484.34028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a10/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - On some properties of solutions of the second order linear differential equations with periodic coefficients having a common oneparametric continuous group of dispersions
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1981
SP  - 93
EP  - 99
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a10/
LA  - en
ID  - AUPO_1981_20_1_a10
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T On some properties of solutions of the second order linear differential equations with periodic coefficients having a common oneparametric continuous group of dispersions
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1981
%P 93-99
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a10/
%G en
%F AUPO_1981_20_1_a10
Staněk, Svatoslav. On some properties of solutions of the second order linear differential equations with periodic coefficients having a common oneparametric continuous group of dispersions. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 20 (1981) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/AUPO_1981_20_1_a10/

[1] Borg G.: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Acta Math. 78 (1946), 1-96. | MR | Zbl

[2] Borůvka O.: Linear Differential Transformations of the Second Order. The English Univ. Press, London, 1971. | MR

[3] Боpyвкa O.: Teopuя глoбaлъныx cвoйcmв oбыкнoвeнныx лuнeйныx дuффepeнцuaлъныx ypaвнeнuй вmopoгo nopядкa. Диффepeнциaльныe ypaвнeния, No 8, T. 12, 1976, 1347-1383.

[4] Borůvka O.: Lectures in the seminar of Matematický ústav ČSAV, Brno.

[5] Greguš M., Neuman F., Arscott F.: Three-point boundary value problems in differential equations. J. London Math. Soc. (2), 3 (1971), 429-436. | MR

[6] Hochstadt H.: On the determination for a Hill's equation from its spectrum. Arch. Rational Mech. Anal., 19, No 5 (1965), 353-364. | MR

[7] Якyбович B. A., Cтapжинский B. M.: Лuнeйныe дuффepeнцuaлъныe ypaвнeнuя c nepuoдuчecкuмu кoэффuцueнmaмu u ux npuлoжeнuя. Изд. „Hayкa", Mосквa 1970.

[8] Magnus W., Winkler S.: Hill's Equation. Interscience Publishers, New York, 1966. | MR | Zbl

[9] Neuman F.: On the Liouville transformation. Rend. Mat., Serie VI, 3 (1970), 1-8. | MR | Zbl

[10] Ungar P.: Stable Hill equations. Comm. Pure Appl. Math., XIV (1961), 707-710. | MR | Zbl