On an application of the generalized Floquet theory to the transformation of the equation $y''= q(t) y$ into its associated equation
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 18 (1979) no. 1, pp. 81-92
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{AUPO_1979_18_1_a8,
author = {Stan\v{e}k, Svatoslav},
title = {On an application of the generalized {Floquet} theory to the transformation of the equation $y''= q(t) y$ into its associated equation},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {81--92},
year = {1979},
volume = {18},
number = {1},
mrnumber = {0589850},
zbl = {0491.34039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1979_18_1_a8/}
}
TY - JOUR AU - Staněk, Svatoslav TI - On an application of the generalized Floquet theory to the transformation of the equation $y''= q(t) y$ into its associated equation JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1979 SP - 81 EP - 92 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1979_18_1_a8/ LA - en ID - AUPO_1979_18_1_a8 ER -
%0 Journal Article %A Staněk, Svatoslav %T On an application of the generalized Floquet theory to the transformation of the equation $y''= q(t) y$ into its associated equation %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1979 %P 81-92 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1979_18_1_a8/ %G en %F AUPO_1979_18_1_a8
Staněk, Svatoslav. On an application of the generalized Floquet theory to the transformation of the equation $y''= q(t) y$ into its associated equation. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 18 (1979) no. 1, pp. 81-92. http://geodesic.mathdoc.fr/item/AUPO_1979_18_1_a8/
[1] O. Borůvka: Linear differential transformations of the second order. The English Universities Press, London 1971. | MR
[2] O. Бopyвкa: Teopuя глoбaлъныx cвoйcmв oбыкнoвeнныx лuнeйныx дuффepeнцuaлъныx ypaвнeнuй вmopoгo nopядкa. Диффepeнциaльныe ypaвнeния, No 8, т. ХII, 1976, 1347-1383.
[3] S. Staněk: Phase and dispersion theory of the differential equation y" = q(t)y in connection with the generalized Floquet theory. Arch. Math. (Brno), XIV, 2, 1978, 109-122. | MR