Semi-ordered groups
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 18 (1979) no. 1, pp. 5-20
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{AUPO_1979_18_1_a0,
author = {Rach\r{u}nek, Ji\v{r}{\'\i}},
title = {Semi-ordered groups},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {5--20},
year = {1979},
volume = {18},
number = {1},
mrnumber = {0589842},
zbl = {0436.06014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1979_18_1_a0/}
}
Rachůnek, Jiří. Semi-ordered groups. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 18 (1979) no. 1, pp. 5-20. http://geodesic.mathdoc.fr/item/AUPO_1979_18_1_a0/
[1] P. Conrad: Lattice ordered groups. Tulane Univ. 1970. | Zbl
[2] E. Fried: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest, Sect. Math., 13 (1970), 151-164. | MR
[3] E. Fried: A generalization of ordered algebraic systems. Acta Sci. Math. (Szeged), 31 (1970), 233-244. | MR | Zbl
[4] L. Fuchs: Partially ordered algebraic systems. Pergamon Press 1963. | MR | Zbl
[5] H. L. Skala: Trellis theory. Alg. Univ., 1 (1971), 218-233. | MR | Zbl
[6] I. Cnajda, J. Niederle: Ideals of weakly associative lattices and pseudo-ordered sets. to appear in Arch. Math. (Brno). | MR