A specialization of an anholonomial subvarietes system of an $n$-dimensional variety in unimodular $n+2$-dimensional space
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 13 (1973) no. 1, pp. 47-54
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{AUPO_1973_13_1_a4,
author = {Markov\'a, Libu\v{s}e},
title = {A specialization of an anholonomial subvarietes system of an $n$-dimensional variety in unimodular $n+2$-dimensional space},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {47--54},
year = {1973},
volume = {13},
number = {1},
mrnumber = {0358585},
zbl = {0294.53003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1973_13_1_a4/}
}
TY - JOUR AU - Marková, Libuše TI - A specialization of an anholonomial subvarietes system of an $n$-dimensional variety in unimodular $n+2$-dimensional space JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1973 SP - 47 EP - 54 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1973_13_1_a4/ LA - en ID - AUPO_1973_13_1_a4 ER -
%0 Journal Article %A Marková, Libuše %T A specialization of an anholonomial subvarietes system of an $n$-dimensional variety in unimodular $n+2$-dimensional space %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1973 %P 47-54 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1973_13_1_a4/ %G en %F AUPO_1973_13_1_a4
Marková, Libuše. A specialization of an anholonomial subvarietes system of an $n$-dimensional variety in unimodular $n+2$-dimensional space. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 13 (1973) no. 1, pp. 47-54. http://geodesic.mathdoc.fr/item/AUPO_1973_13_1_a4/
[1] Marková Libuše: Reporáž systému anholonomních subvariet trojrozměrné variety v pětirozměrném ekviafinním prostoru. Matematický časopis 22 (1972), No. 1. | MR
[2] Ивлев Е.Т., Лучинин А.А.: О репераже поверхности $\varPhi_n$ в $P^{n+2}\ (n\geq2)$. Известия высших учебных заведений, мат. Но. 9 64, 1967.
[3] Щербаков Р.Н.: Курс аффинной и проективной дифференциальной геометрии. Томск 1960. | Zbl
[4] Kolář I.: Užití Cartanových metod ke studiu obecné sítě křivek na ploše v trojrozměrném projektivním prostoru. Rozpravy ČSAV, 77, 1967. | MR
[5] Svoboda K., Havel V., Kolář I.: La métode du repérage des systémes de sous-variétés. Comm. Math. Univ. Carolinae 5 (1964) str. 183-201. | MR