Semicanonical moving frame of the hypersurface in a unimodular 4-dimensional affine space
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 11 (1971) no. 1, pp. 103-107
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{AUPO_1971_11_1_a8,
author = {Markov\'a, Libu\v{s}e},
title = {Semicanonical moving frame of the hypersurface in a unimodular 4-dimensional affine space},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {103--107},
year = {1971},
volume = {11},
number = {1},
mrnumber = {0336565},
zbl = {0263.53010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1971_11_1_a8/}
}
TY - JOUR AU - Marková, Libuše TI - Semicanonical moving frame of the hypersurface in a unimodular 4-dimensional affine space JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1971 SP - 103 EP - 107 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1971_11_1_a8/ LA - en ID - AUPO_1971_11_1_a8 ER -
%0 Journal Article %A Marková, Libuše %T Semicanonical moving frame of the hypersurface in a unimodular 4-dimensional affine space %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1971 %P 103-107 %V 11 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1971_11_1_a8/ %G en %F AUPO_1971_11_1_a8
Marková, Libuše. Semicanonical moving frame of the hypersurface in a unimodular 4-dimensional affine space. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 11 (1971) no. 1, pp. 103-107. http://geodesic.mathdoc.fr/item/AUPO_1971_11_1_a8/
[1] Favar Ž.: Kurs lokalnoj differencialnoj geometrii. Moskva 1960.
[2] Finikov S. P.: Metod vněšnich form Kartana. Moskva-Leningrad 1948.
[3] Finikov S. P.: Projektivno-differencialnaja geometrija. Moskva-Leningrad 1937.
[4] Kolář I.: Užití Cartanových metod ke studiu obecné sítě křivek na ploše v trojrozměrném prostoru. Rozpravy čes. ak. věd 1967 ročník 77, sešit 5. | MR
[5] Svoboda K., Havel V., Kolář I.: La méthode du repérage des systémes de sous-variétés. Comm. Math. Univ. Carolinae 5 (1964) str. 183-201. | MR
[6] Ščerbakov R. N.: Kurs affinnoj i projektivnoj geometrii. Tomsk 1960. | MR
[7] Ščerbakov R. N.: O metodě podvižnogo repera i reperaža podmnogoobrazij. Geom. sbornik č. 6, 1967.