Voir la notice de l'article provenant de la source Library of Science
@article{AUPCM_2021_20_a6, author = {Grieve, Nathan}, title = {Wedderburn components, the index theorem and continuous {Castelnuovo-Mumford} regularity for semihomogeneous vector bundles}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, pages = {95--119}, publisher = {mathdoc}, volume = {20}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a6/} }
TY - JOUR AU - Grieve, Nathan TI - Wedderburn components, the index theorem and continuous Castelnuovo-Mumford regularity for semihomogeneous vector bundles JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica PY - 2021 SP - 95 EP - 119 VL - 20 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a6/ LA - en ID - AUPCM_2021_20_a6 ER -
%0 Journal Article %A Grieve, Nathan %T Wedderburn components, the index theorem and continuous Castelnuovo-Mumford regularity for semihomogeneous vector bundles %J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica %D 2021 %P 95-119 %V 20 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a6/ %G en %F AUPCM_2021_20_a6
Grieve, Nathan. Wedderburn components, the index theorem and continuous Castelnuovo-Mumford regularity for semihomogeneous vector bundles. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 20 (2021), pp. 95-119. http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a6/
[1] Atiyah, Michael F. "Vector bundles over an elliptic curve." Proc. London Math. Soc. (3) 7 (1957): 414-452.
[2] Barja, Miguel Ángel and Rita Pardini, and Lidia Stoppino. "Linear systems on irregular varieties." J. Inst. Math. Jussieu 19, no. 6 (2020): 2087-2125.
[3] Bayer, David and Michael Stillman. "A criterion for detecting m-regularity." Invent. Math. 87, no. 1 (1987): 1-11.
[4] Brion, Michel. "Homogeneous projective bundles over abelian varieties." Algebra Number Theory 7, no. 10 (2013): 2475-2510.
[5] Green, Mark and Robert Lazarsfeld. "Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville." Invent. Math. 90, no. 2 (1987): 389-407.
[6] Grieve, Nathan. "Index conditions and cup-product maps on Abelian varieties." Internat. J. Math. 25, no. 4 (2014): 1450036, 31.
[7] Grieve, Nathan. "Refinements to Mumford’s theta and adelic theta groups." Ann. Math. Qué. 38, no. 2 (2014): 145-167.
[8] Grieve, Nathan. "Reduced norms and the Riemann-Roch theorem for Abelian varieties." New York J. Math. 23 (2017): 1087–1110.
[9] Grieve, Nathan. "On cubic torsors, biextensions and Severi-Brauer varieties over Abelian varieties." São Paulo J. Math. Sci. (to appear).
[10] Gulbrandsen, Martin G. "Fourier-Mukai transforms of line bundles on derived equivalent abelian varieties." Matematiche (Catania) 63, no. 1 (2008): 123-137.
[11] Hacon, Christopher D. "A derived category approach to generic vanishing." J. Reine Angew. Math. 575 (2004): 173-187.
[12] Hulek, Klaus and Roberto Laface. "On the Picard numbers of Abelian varieties." Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19, no. 3 (2019): 1199-1224.
[13] Küronya, Alex and Yusuf Mustopa. "Continuous CM-regularity of semihomogeneous vector bundles". Adv. Geom. 20, no. 3 (2020): 401-412.
[14] Mukai, Shigeru. "Semi-homogeneous vector bundles on an Abelian variety." J. Math. Kyoto Univ. 18, no. 2 (1978): 239-272.
[15] Mukai, Shigeru. "Duality between D(X) and D(ˆX ) with its application to Picard sheaves." Nagoya Math. J. 81 (1981): 153-175.
[16] Mumford, David. Lectures on curves on an algebraic surface. Vol. 59 of Annals of Mathematics Studies. Princeton, N.J.: Princeton University Press, 1966.
[17] Mumford, David. Abelian varieties. Vol. 5 of Tata Institute of Fundamental Research Studies in Mathematics. Bombay; Oxford University Press, London: Published for the Tata Institute of Fundamental Research, 1970.
[18] Mumford, David. "Varieties defined by quadratic equations." Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) , 29-100. Rome: Edizioni Cremonese, 1970.
[19] Lazarsfeld, Robert. Positivity in algebraic geometry. I, Vol. 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin: Springer-Verlag, 2004.
[20] Pareschi, Giuseppe and Mihnea Popa. "Regularity on abelian varieties. I." J. Amer. Math. Soc. 16, no. 2 (2003): 285-302.
[21] Pareschi, Giuseppe and Mihnea Popa. "Regularity on abelian varieties. II. Basic results on linear series and defining equations." J. Algebraic Geom. 13, no. 1 (2004): 167-193.
[22] Pareschi, Giuseppe and Mihnea Popa. "Regularity on abelian varieties III: relationship with generic vanishing and applications." Grassmannians, moduli spaces and vector bundles, 141-167. Providence, RI, Amer. Math. Soc., 2011.