Voir la notice de l'article provenant de la source Library of Science
@article{AUPCM_2021_20_a5, author = {\'Slosarski, Miros{\l}aw}, title = {Metrizable space of multivalued maps}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, pages = {77--93}, publisher = {mathdoc}, volume = {20}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a5/} }
Ślosarski, Mirosław. Metrizable space of multivalued maps. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 20 (2021), pp. 77-93. http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a5/
[1] Górniewicz, Lech. Topological methods in fixed point theory of multivalued mappings. Dordrecht: Springer, 2006.
[2] Górniewicz, Lech. "Homological methods in fixed point theory of multi-valued maps." Dissertationes Math. 129 (1976): 1-66.
[3] Górniewicz, Lech. "Topological degree and its applications to differential inclusions." Raccolta di Seminari del Dipartimento di Matematica dell’Universita degli Studi della Calabria, March-April 1983.
[4] Górniewicz, Lech, and Andrzej Granas. "Topology of morphisms and fixed point problems for set-valued maps." Fixed point theory and applications (Marseille, 1989), 173–191. Vol. 252 of Pitman Res. Notes Math. Ser. Harlow: Longman Sci. Tech., 1991.
[5] Górniewicz, Lech, and Andrzej Granas. "Some general theorems in coincidence theory." I. J. Math. Pures Appl. (9) 60, no. 4 (1981): 361-373.
[6] Kryszewski, Wojciech. Homotopy properties of set-valued mappings. Torun: The Nicolaus Copernicus University, 1997.
[7] Kryszewski, Wojciech. "Topological and approximation methods of degree theory of set-valued maps." Dissertationes Math. (Rozprawy Mat.) 336 (1994): 101 pp.
[8] Ślosarski, Mirosław. "The multi-morphisms and their properties and applications." Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015): 5-25.