Examples of non connective C*-algebras
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 20 (2021), pp. 57-61.

Voir la notice de l'article provenant de la source Library of Science

This paper investigates the problem of the existence and uniqueness of solutions under the generalized self-similar forms to the space-fractional diffusion equation. Therefore, through applying the properties of Schauder's and Banach's fixed point theorems; we establish several results on the global existence and blow-up of generalized self-similar solutions to this equation.
Keywords: connective C*-algebras, crystallographic groups, combinatorial and generalized Hantzsche-Wendt groups
@article{AUPCM_2021_20_a3,
     author = {G\k{a}sior, Anna and Szczepa\'nski, Andrzej},
     title = {Examples of non connective {C*-algebras}},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     pages = {57--61},
     publisher = {mathdoc},
     volume = {20},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a3/}
}
TY  - JOUR
AU  - Gąsior, Anna
AU  - Szczepański, Andrzej
TI  - Examples of non connective C*-algebras
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2021
SP  - 57
EP  - 61
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a3/
LA  - en
ID  - AUPCM_2021_20_a3
ER  - 
%0 Journal Article
%A Gąsior, Anna
%A Szczepański, Andrzej
%T Examples of non connective C*-algebras
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2021
%P 57-61
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a3/
%G en
%F AUPCM_2021_20_a3
Gąsior, Anna; Szczepański, Andrzej. Examples of non connective C*-algebras. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 20 (2021), pp. 57-61. http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a3/

[1] Craig, Will, and Peter A. Linnell. "Unique product groups and congruence subgroups." J. Algebra Appl., online, DOI: 10.1142/S0219498822500256.

[2] Dadarlat, Marius. "Group quasi-representations and almost flat bundles." J. Noncommut. Geom. 8, no. 1 (2014): 163-178.

[3] Dadarlat, Marius, and Ulrich Pennig. "Deformations of nilpotent groups and homotopy symmetric C*-algebras." Math. Ann. 367, no. 1-2 (2017): 121-134.

[4] Dadarlat, Marius, and Ulrich Pennig. "Connective C?-algebras." J. Funct. Anal. 272, no. 12 (2017): 4919-4943.

[5] Dadarlat, Marius, and Ulrich Pennig, and Andrew Schneider. "Deformations of wreath products." Bull. Lond. Math. Soc. 49, no. 1 (2017): 23-32.

[6] Dadarlat, Marius, and Ellen Weld. "Connective Bieberbach groups." Internat. J. Math. 31, no. 6 (2020): 2050047, 13 pp.

[7] Gąsior, Anna, and Rafał Lutowski, and Andrzej Szczepanski. "A short note about diffuse Bieberbach groups." J. Algebra 494 (2018): 237-245.

[8] Gardam, Giles. "A countrexample to the unit conjecture for group rings." arXiv: 2102.11818v3.

[9] Szczepański, Andrzej. Geometry of crystallographic groups. Vol. 4 of Algebra and Discrete Mathematics. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2012.

[10] Szczepanski, Andrzej. "Properties of the combinatorial Hantzsche-Wendt groups." arXive:2103.12494.