On dilation and commuting liftings of $n$-tuples of commuting Hilbert space contractions
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 121-139.

Voir la notice de l'article provenant de la source Library of Science

The n-tuples of commuting Hilbert space contractions are considered. We give a model of a commuting lifting of one contraction and investigate conditions under which a commuting lifting theorem holds for an n-tuple. A series of such liftings leads to an isometric dilation of the n-tuple. The method is tested on some class of triples motivated by Parrotts example. It provides also a new proof of the fact that a positive definite n-tuple has an isometric dilation.
Keywords: dilation, lifting, von Neumann inequality
@article{AUPCM_2020_19_a9,
     author = {Burdak, Zbigniew and Grygierzec, Wies{\l}aw},
     title = {On dilation and commuting liftings of $n$-tuples of commuting {Hilbert} space contractions},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     pages = {121--139},
     publisher = {mathdoc},
     volume = {19},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a9/}
}
TY  - JOUR
AU  - Burdak, Zbigniew
AU  - Grygierzec, Wiesław
TI  - On dilation and commuting liftings of $n$-tuples of commuting Hilbert space contractions
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2020
SP  - 121
EP  - 139
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a9/
LA  - en
ID  - AUPCM_2020_19_a9
ER  - 
%0 Journal Article
%A Burdak, Zbigniew
%A Grygierzec, Wiesław
%T On dilation and commuting liftings of $n$-tuples of commuting Hilbert space contractions
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2020
%P 121-139
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a9/
%G en
%F AUPCM_2020_19_a9
Burdak, Zbigniew; Grygierzec, Wiesław. On dilation and commuting liftings of $n$-tuples of commuting Hilbert space contractions. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 121-139. http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a9/

[1] Andô, Tsuyoshi. "On a pair of commutative contractions." Acta Sci. Math. (Szeged) 24 (1963): 88-90.

[2] Arhancet, Cédric, and Stephan Fackler, and Christian Le Merdy. "Isometric dilations and H1 calculus for bounded analytic semigroups and Ritt operators." Trans. Amer. Math. Soc. 369, no. 10 (2017): 6899-6933.

[3] Ball, Joseph A., and Haripada Sau. "Rational dilation of tetrablock contractions revisited." J. Funct. Anal. 278, no. 1 (2020): 108275, 14 pp.

[4] Barik, Sibaprasad, et all. "Isometric dilations and von Neumann inequality for a class of tuples in the polydisc." Trans. Amer. Math. Soc. 372, no. 2 (2019): 1429-1450.

[5] Choi, Man-Duen, and Kenneth R. Davidson. "A 3 × 3 dilation counterexample." Bull. Lond. Math. Soc. 45, no. 3 (2013): 511-519.

[6] Das, B. Krishna, and Jaydeb Sarkar. "Andô dilations, von Neumann inequality, and distinguished varieties." J. Funct. Anal. 272, no. 5 (2017): 2114-2131.

[7] Fackler, Stephan, and Glück, Jochen. "A toolkit for constructing dilations on Banach spaces." Proc. Lond. Math. Soc. (3) 118, no. 2, (2019): 416-440.

[8] Foias, Ciprian, and Arthur E. Frazho. The commutant lifting approach to interpolation problems. Vol. 44 of Operator Theory: Advances and Applications. Basel: Birkhäuser Verlag, 1990.

[9] Keshari, Dinesh Kumar, and Nirupama Mallick. "q-commuting dilation." Proc. Amer. Math. Soc. 147, no. 2 (2019): 655-669.

[10] Müller, Vladimír. "Commutant lifting theorem for n-tuples of contractions." Acta Sci. Math. (Szeged) 59, no. 3-4 (1994): 465-474.

[11] Parrott, Stephen. "Unitary dilations for commuting contractions." Pacific J. Math. 34 (1970): 481-490.

[12] Paulsen, Vern. Completely bounded maps and operator algebras. Vol. 78 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 2002.

[13] Popescu, Gelu. "Andô dilations and inequalities on noncommutative varieties." J. Funct. Anal. 272, no. 9 (2017): 3669-3711.

[14] Russo, Benjamin. "Lifting commuting 3-isometric tuples." Oper. Matrices 11, no. 2 (2017): 397-433.

[15] Szokefalvi-Nagy, Béla. "Sur les contractions de l’espace de Hilbert." Acta Sci. Math. (Szeged) 15 (1953): 87-92.

[16] Szokefalvi-Nagy, Béla and Ciprian Foias. Harmonic analysis of operators on Hilbert space. Amsterdam-London: North-Holland Publishing Co.; New York: American Elsevier Publishing Co., Inc.; Budapest: Akadémiai Kiadó, 1970.

[17] Varopoulos, Nicholas Th. "On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory." J. Functional Analysis 16 (1974): 83-100.