Voir la notice de l'article provenant de la source Library of Science
@article{AUPCM_2020_19_a6, author = {Obojska, Lidia and Walendziak, Andrzej}, title = {The p-semisimple property for some generalizations of {BCI} algebras and its applications}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, pages = {79--94}, publisher = {mathdoc}, volume = {19}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a6/} }
TY - JOUR AU - Obojska, Lidia AU - Walendziak, Andrzej TI - The p-semisimple property for some generalizations of BCI algebras and its applications JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica PY - 2020 SP - 79 EP - 94 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a6/ LA - en ID - AUPCM_2020_19_a6 ER -
%0 Journal Article %A Obojska, Lidia %A Walendziak, Andrzej %T The p-semisimple property for some generalizations of BCI algebras and its applications %J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica %D 2020 %P 79-94 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a6/ %G en %F AUPCM_2020_19_a6
Obojska, Lidia; Walendziak, Andrzej. The p-semisimple property for some generalizations of BCI algebras and its applications. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 79-94. http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a6/
[1] Aslam, Muhammad, and Allah-Bakhsh Thaheem. "A note on p-semisimple BCIalgebras." Math. Japon. 36, no. 1 (1991): 39-45.
[2] Clay, Robert Edward. "Relation of Lesniewski’s mereology to Boolean algebra." J. Symbolic Logic 39 (1974): 638-648.
[3] Hoo, Cheong Seng. "Closed ideals and p-semisimple BCI-algebras." Math. Japon. 35, no. 6 (1990): 1103-1112.
[4] Hu, Qing Ping, and Xin Li. "On BCH-algebras." Math. Sem. Notes Kobe Univ. 11, no. 2 (1983): 313-320.
[5] Imai, Yasuyuki, and Kiyoshi Iséki. "On axiom systems of propositional calculi. XIV." Proc. Japan Acad. 42 (1966): 19-22.
[6] Iorgulescu, Afrodita. "New generalizations of BCI, BCK and Hilbert algebras – Part I." J. Mult.-Valued Logic Soft Comput. 27, no. 4 (2016): 353-406.
[7] Iorgulescu, Afrodita. "New generalizations of BCI, BCK and Hilbert algebras – Part II." J. Mult.-Valued Logic Soft Comput. 27, no. 4 (2016): 407-456.
[8] Iséki, Kiyoshi. "An algebra related with a propositional calculus." Proc. Japan Acad. 42 (1966): 26-29.
[9] Kim, Hee Sik, and Hong Goo Park. "On 0-commutative B-algebras." Sci. Math. Jpn. 62, no. 1 (2005): 7-12.
[10] Lei, Tian De, and Chang Chang Xi. "p-radical in BCI-algebras." Math. Japon. 30, no. 4 (1985): 511-517.
[11] Lesniewski, Stanisław. Stanislaw Lesniewski: Collected Works - Volumes I and II. Vol. 44 of Nijhoff International Philosophy Series. Dordrecht: Kluwer Academic Publishers, 1992.
[12] Loeb, Iris. "From Mereology to Boolean Algebra: The Role of Regular Open Sets in Alfred Tarski’s Work." In: The History and Philosophy of Polish Logic: Essays in Honour of Jan Wolenski, 259-277. New York: Palgrave Macmillan, 2014.
[13] Meng, Dao Ji. "BCI-algebras and abelian groups." Math. Japon. 32, no. 5 (1987): 693-696.
[14] Obojska, Lidia. "Some remarks on supplementation principles in the absence of antisymmetry." Rev. Symb. Log. 6, no. 2 (2013): 343-347.
[15] Obojska, Lidia. U zródeł zbiorów kolektywnych: o mereologii nieantysymetrycznej. Siedlce: Wydawnictwo UPH, 2013.
[16] Patrignani, Claudia et al. (Particle Data Group). "Review of Particle Physics." Chin. Phys. C 40, no. 10 (2016): 100001.
[17] Pietruszczak, Andrzej. Metamereologia. Torun: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2000.
[18] Shohani, Javad, Rajab Ali Borzooei, and Morteza Afshar Jahanashah. "Basic BCI-algebras and abelian groups are equivalent." Sci. Math. Jpn. 66, no. 2 (2007): 243-245.
[19] Walendziak, Andrzej. "On BF-algebras." Math. Slovaca 57, no. 2 (2007): 119-128.
[20] Ye, Reifen. "On BZ-algebras." In: Selected paper on BCI/BCK-algebras and Computer Logics, 21-24. Shaghai: Shaghai Jiaotong University Press, 1991.
[21] Zhang, Qun. "Some other characterizations of p-semisimple BCI-algebras." Math. Japon. 36, no. 5 (1991): 815-817.