Nearly irreducibility of polynomials and the Newton diagrams
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 65-77.

Voir la notice de l'article provenant de la source Library of Science

Let f be a polynomial in two complex variables. We say that f is nearly irreducible if any two nonconstant polynomial factors of f have a common zero in C^2. In the paper we give a criterion of nearly irreducibility for a given polynomial f in terms of its Newton diagram.
Keywords: irreducibility of polynomials, Newton diagram, Newton polygon, plane algebraic curve
@article{AUPCM_2020_19_a5,
     author = {Masternak, Mateusz},
     title = {Nearly irreducibility of polynomials and the {Newton} diagrams},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     pages = {65--77},
     publisher = {mathdoc},
     volume = {19},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a5/}
}
TY  - JOUR
AU  - Masternak, Mateusz
TI  - Nearly irreducibility of polynomials and the Newton diagrams
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2020
SP  - 65
EP  - 77
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a5/
LA  - en
ID  - AUPCM_2020_19_a5
ER  - 
%0 Journal Article
%A Masternak, Mateusz
%T Nearly irreducibility of polynomials and the Newton diagrams
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2020
%P 65-77
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a5/
%G en
%F AUPCM_2020_19_a5
Masternak, Mateusz. Nearly irreducibility of polynomials and the Newton diagrams. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 65-77. http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a5/

[1] Abhyankar, Shreeram S., and Lee A. Rubel. "Every difference polynomial has a connected zero-set." J. Indian Math. Soc. (N.S.) 43, no. 1-4 (1979): 69-78.

[2] Ajzenberg L.A., and A.P. Južakow. Integral representations and residues in multidimentional complex analysis. , Novosibirsk: Izdat. Nauka, Sibirskoe Otdelenie, 1991. (in Russian).

[3] Atiyah, Michael F. "Angular momentum, convex polyhedra and algebraic geometry." Proc. Edinburgh Math. Soc. (2) 26, no. 2, (1983): 121-133.

[4] Bernstein, D.N. "The number of roots of a system of equations." Funkcional. Anal. i Priložen. 9, no. 3 (1975): 1-4. (in Russian)

[5] Bernstein, D.N., A.G. Kušnirenko, and A.G. Hovanski˘ı. "Newton polyhedra." Uspehi Mat. Nauk 31, no. 3(189) (1976): 201-202. (in Russian)

[6] Cassou-Noguè s, Pierrette, and Arkadiusz Płoski. "Invariants of plane curve singularities and Newton diagrams." Univ. Iagel. Acta Math. 49 (2011): 9-34.

[7] Fulton, William. Algebraic curves. An introduction to algebraic geometry. New York-Amsterdam: W.A. Benjamin, Inc., 1969.

[8] Hovanskiı, A.G. "Newton polyhedra, and toroidal varieties." Funkcional. Anal. i Priložen. 11, no. 4 (1977) 56-64. (in Russian)

[9] Hovanskiı, A.G. "Newton polyhedra, and the genus of complete intersections." Funktsional. Anal. i Prilozhen. 12, no. 1, (1978): 51-61. (in Russian)

[10] Kušnirenko, A.G. "Newton polyhedra and a number of roots of a system of k equations in k variables." Uspehi Mat. Nauk 30, no. 2 (1975): 266-267 (in Russian).

[11] Kušnirenko, A.G. "Newton polyhedra and Bezout’s theorem." Funkcional. Anal. i Priložen. 10, no. 3 (1976): 82-83. (in Russian).

[12] Kušnirenko, A.G. "Polyèdres de Newton et nombres de Milnor." Invent. Math. 32, no. 1 (1976): 1-31.

[13] Masternak, Mateusz. "Invariants of singularities of polynomials in two complex variables and the Newton diagrams." Univ. Iagel. Acta Math. 39 (2001): 179-188.

[14] Ostrowski, A.M. "Uber die Bedeutung der Theorie der konvexen Polyeder fur die formale Algebra." Jahresberichte Deutsche Math. Verein 30 (1921): 98-99.

[15] Płoski, Arkadiusz. "Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of C2." Ann. Polon. Math. 51 (1990): 275-281.

[16] Płoski, Arkadiusz. "On the irreducibility of polynomials in several complex variables." Bull. Polish Acad. Sci. Math. 39, no. 3-4 (1991): 241-247.

[17] Rubel, L. A., A. Schinzel, and H. Tverberg. "On difference polynomials and hereditarily irreducible polynomials." J. Number Theory 12, no. 2 (1980): 230-235.

[18] Schneider, Rolf. Convex bodies: the Brunn-Minkowski theory. Vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1993.

[19] Webster, Roger. Convexity. New York: The Clarendon Press, Oxford University Press, 1994.