Voir la notice de l'article provenant de la source Library of Science
@article{AUPCM_2020_19_a4, author = {Frasin, Basem Aref and Murugusundaramoorthy, Gangadharan}, title = {A subordination results for a class of analytic functions defined by q-differential operator}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, pages = {53--64}, publisher = {mathdoc}, volume = {19}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a4/} }
TY - JOUR AU - Frasin, Basem Aref AU - Murugusundaramoorthy, Gangadharan TI - A subordination results for a class of analytic functions defined by q-differential operator JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica PY - 2020 SP - 53 EP - 64 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a4/ LA - en ID - AUPCM_2020_19_a4 ER -
%0 Journal Article %A Frasin, Basem Aref %A Murugusundaramoorthy, Gangadharan %T A subordination results for a class of analytic functions defined by q-differential operator %J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica %D 2020 %P 53-64 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a4/ %G en %F AUPCM_2020_19_a4
Frasin, Basem Aref; Murugusundaramoorthy, Gangadharan. A subordination results for a class of analytic functions defined by q-differential operator. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 53-64. http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a4/
[1] Aouf, Mohamed Kamal et al. "beta-uniformly convex and starlike functions." Proc. Pakistan Acad. Sci. 46, no. 2 (2009): 97-101.
[2] Araci, Serkan et al. "A certain (p, q)-derivative operator and associated divided differences." J. Inequal. Appl. 2019 (2019): Paper No. 301.
[3] Aral, Ali, Vijay Gupta, and Ravi P. Agarwal. Applications of q-calculus in operator theory. New York: Springer, 2013.
[4] Attiya, Adel A. "On some applications of a subordination theorem." J. Math. Anal. Appl. 311, no. 2 (2005): 489-494.
[5] Al-Oboudi, Fatima M. "On univalent functions defined by a generalized Salagean operator." Int. J. Math. Math. Sci. no. 25-28 (2004): 1429-1436.
[6] Frasin, Basem Aref. "Subordination results for a class of analytic functions defined by a linear operator." JIPAM. J. Inequal. Pure Appl. Math. 7 (2006): Article 4.
[7] Jackson, Frederick H., "On q-functions and a certain difference operator." Trans. Royal Soc. Edinb. 46 (1908): 253-281.
[8] Gangadharan, A., Tirunelveli Nellaiappan Shanmugam, and Hari Mohan Srivastava. "Generalized hypergeometric functions associated with k-uniformly convex functions." Comput. Math. Appl. 44, no. 12 (2002): 1515-1526.
[9] Goodman, Adolph W. "On uniformly convex functions." Ann. Polon. Math. 56, no. 1 (1991): 87-92.
[10] Goodman, Adolph W. "On uniformly starlike functions." J. Math. Anal. Appl. 155, no. 2 (1991): 364-370.
[11] Govindaraj, M., and Srikandan Sivasubramanian. "On a class of analytic functions related to conic domains involving q-calculus." Anal. Math. 43, no. 3 (2017): 475-487.
[12] Kanas, Stanisława R. and Dorina Raducanu. "Some class of analytic functions related to conic domains." Math. Slovaca 64, no. 5 (2014): 1183-1196.
[13] Kanas, Stanisława R., and Agnieszka Wisniowska. "Conic regions and k-uniform convexity." J. Comput. Appl. Math. 105, no. 1-2 (1999): 327-336.
[14] Kanas, Stanisława R., and Agnieszka Wisniowska. "Conic domains and starlike functions." Rev. Roumaine Math. Pures Appl. 45, no. 4 (2000): 647-657.
[15] Kanas, Stanisława R., and Hari Mohan Srivastava. "Linear operators associated with k-uniformly convex functions." Integral Transform. Spec. Funct. 9, no. 2 (2000): 121-132.
[16] Karahuseyin, Zeliha, Sahsene Altinkaya, and Sibel Yalçin. "On H3(1) Hankel determinant for univalent functions defined by using q−derivative operator." TJMM 9, no. 1 (2017): 25-33.
[17] Littlewood, John Edensor. "On Inequalities in the Theory of Functions." Proc. London Math. Soc. 23, no. 7 (2): 481-519.
[18] Ma, Wan Cang, and David Minda. "Uniformly convex functions." Ann. Polon. Math. 57, no. 2 (1992): 165-175.
[19] Rønning, Frode. "Uniformly convex functions and a corresponding class of starlike functions." Proc. Amer. Math. Soc. 118, no. 1 (1993): 189-196.
[20] Rønning, Frode. "On starlike functions associated with parabolic regions." Ann. Univ. Mariae Curie-Skłodowska Sect. A 45, no. 1991 (1992): 117-122.
[21] Salagean, Grigore Stefan. "Subclasses of univalent functions." Complex Analysis: Fifth Romanian- Finnish Seminar, Part I(Bucharest, 1981) Vol. 1013 of Lecture Notes in Mathematics, 362-372. Berlin, New York: Springer-Verlag, 1983.
[22] Silverman, Herb. "Univalent functions with negative coefficients." Proc. Amer. Math. Soc. 51 (1975): 109-116.
[23] Silverman, Herb. "A survey with open problems on univalent functions whose coefficients are negative." Rocky Mountain J. Math. 21, no. 3 (1991): 1099-1125.
[24] Silverman, Herb. "Integral means for univalent functions with negative coefficients." Houston J. Math. 23, no. 1 (1997): 169-174.
[25] Singh, Sukhjit. "A subordination theorem for spirallike functions." Int. J. Math. Math. Sci. 24, no. 7 (2000): 433-435.
[26] Srivastava, Hari Mohan. "Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials." Appl. Math. Inf. Sci. 5, no. 3 (2011): 390-444.
[27] Srivastava, Hari Mohan, and Adel A. Attiya. "Some subordination results associated with certain subclasses of analytic functions." JIPAM. J. Inequal. Pure Appl. Math. 5, no. 4 (2004): 6pp.
[28] Wilf, Herbert Saul. "Subordinating factor sequences for convex maps of the unitcircle." Proc. Amer. Math. Soc. 12 (1961): 689-693.