A subordination results for a class of analytic functions defined by q-differential operator
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 53-64.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we derive several subordination results and integral means result for certain class of analytic functions defined by means of q-differential operator. Some interesting corollaries and consequences of our results are also considered.
Keywords: Analytic functions, Univalent functions, Subordinating factor sequence, q-difference operator, Hadamard product (or convolution)
@article{AUPCM_2020_19_a4,
     author = {Frasin, Basem Aref and Murugusundaramoorthy, Gangadharan},
     title = {A subordination results for a class of analytic functions defined by q-differential operator},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     pages = {53--64},
     publisher = {mathdoc},
     volume = {19},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a4/}
}
TY  - JOUR
AU  - Frasin, Basem Aref
AU  - Murugusundaramoorthy, Gangadharan
TI  - A subordination results for a class of analytic functions defined by q-differential operator
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2020
SP  - 53
EP  - 64
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a4/
LA  - en
ID  - AUPCM_2020_19_a4
ER  - 
%0 Journal Article
%A Frasin, Basem Aref
%A Murugusundaramoorthy, Gangadharan
%T A subordination results for a class of analytic functions defined by q-differential operator
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2020
%P 53-64
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a4/
%G en
%F AUPCM_2020_19_a4
Frasin, Basem Aref; Murugusundaramoorthy, Gangadharan. A subordination results for a class of analytic functions defined by q-differential operator. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 53-64. http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a4/

[1] Aouf, Mohamed Kamal et al. "beta-uniformly convex and starlike functions." Proc. Pakistan Acad. Sci. 46, no. 2 (2009): 97-101.

[2] Araci, Serkan et al. "A certain (p, q)-derivative operator and associated divided differences." J. Inequal. Appl. 2019 (2019): Paper No. 301.

[3] Aral, Ali, Vijay Gupta, and Ravi P. Agarwal. Applications of q-calculus in operator theory. New York: Springer, 2013.

[4] Attiya, Adel A. "On some applications of a subordination theorem." J. Math. Anal. Appl. 311, no. 2 (2005): 489-494.

[5] Al-Oboudi, Fatima M. "On univalent functions defined by a generalized Salagean operator." Int. J. Math. Math. Sci. no. 25-28 (2004): 1429-1436.

[6] Frasin, Basem Aref. "Subordination results for a class of analytic functions defined by a linear operator." JIPAM. J. Inequal. Pure Appl. Math. 7 (2006): Article 4.

[7] Jackson, Frederick H., "On q-functions and a certain difference operator." Trans. Royal Soc. Edinb. 46 (1908): 253-281.

[8] Gangadharan, A., Tirunelveli Nellaiappan Shanmugam, and Hari Mohan Srivastava. "Generalized hypergeometric functions associated with k-uniformly convex functions." Comput. Math. Appl. 44, no. 12 (2002): 1515-1526.

[9] Goodman, Adolph W. "On uniformly convex functions." Ann. Polon. Math. 56, no. 1 (1991): 87-92.

[10] Goodman, Adolph W. "On uniformly starlike functions." J. Math. Anal. Appl. 155, no. 2 (1991): 364-370.

[11] Govindaraj, M., and Srikandan Sivasubramanian. "On a class of analytic functions related to conic domains involving q-calculus." Anal. Math. 43, no. 3 (2017): 475-487.

[12] Kanas, Stanisława R. and Dorina Raducanu. "Some class of analytic functions related to conic domains." Math. Slovaca 64, no. 5 (2014): 1183-1196.

[13] Kanas, Stanisława R., and Agnieszka Wisniowska. "Conic regions and k-uniform convexity." J. Comput. Appl. Math. 105, no. 1-2 (1999): 327-336.

[14] Kanas, Stanisława R., and Agnieszka Wisniowska. "Conic domains and starlike functions." Rev. Roumaine Math. Pures Appl. 45, no. 4 (2000): 647-657.

[15] Kanas, Stanisława R., and Hari Mohan Srivastava. "Linear operators associated with k-uniformly convex functions." Integral Transform. Spec. Funct. 9, no. 2 (2000): 121-132.

[16] Karahuseyin, Zeliha, Sahsene Altinkaya, and Sibel Yalçin. "On H3(1) Hankel determinant for univalent functions defined by using q−derivative operator." TJMM 9, no. 1 (2017): 25-33.

[17] Littlewood, John Edensor. "On Inequalities in the Theory of Functions." Proc. London Math. Soc. 23, no. 7 (2): 481-519.

[18] Ma, Wan Cang, and David Minda. "Uniformly convex functions." Ann. Polon. Math. 57, no. 2 (1992): 165-175.

[19] Rønning, Frode. "Uniformly convex functions and a corresponding class of starlike functions." Proc. Amer. Math. Soc. 118, no. 1 (1993): 189-196.

[20] Rønning, Frode. "On starlike functions associated with parabolic regions." Ann. Univ. Mariae Curie-Skłodowska Sect. A 45, no. 1991 (1992): 117-122.

[21] Salagean, Grigore Stefan. "Subclasses of univalent functions." Complex Analysis: Fifth Romanian- Finnish Seminar, Part I(Bucharest, 1981) Vol. 1013 of Lecture Notes in Mathematics, 362-372. Berlin, New York: Springer-Verlag, 1983.

[22] Silverman, Herb. "Univalent functions with negative coefficients." Proc. Amer. Math. Soc. 51 (1975): 109-116.

[23] Silverman, Herb. "A survey with open problems on univalent functions whose coefficients are negative." Rocky Mountain J. Math. 21, no. 3 (1991): 1099-1125.

[24] Silverman, Herb. "Integral means for univalent functions with negative coefficients." Houston J. Math. 23, no. 1 (1997): 169-174.

[25] Singh, Sukhjit. "A subordination theorem for spirallike functions." Int. J. Math. Math. Sci. 24, no. 7 (2000): 433-435.

[26] Srivastava, Hari Mohan. "Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials." Appl. Math. Inf. Sci. 5, no. 3 (2011): 390-444.

[27] Srivastava, Hari Mohan, and Adel A. Attiya. "Some subordination results associated with certain subclasses of analytic functions." JIPAM. J. Inequal. Pure Appl. Math. 5, no. 4 (2004): 6pp.

[28] Wilf, Herbert Saul. "Subordinating factor sequences for convex maps of the unitcircle." Proc. Amer. Math. Soc. 12 (1961): 689-693.