Counter examples for pseudo-amenability of some semigroup algebras
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 35-38.

Voir la notice de l'article provenant de la source Library of Science

In this short note, we give some counter examples which show that [11, Proposition 3.5] is not true. As a consequence, the arguments in [11, Proposition 4.10] is not valid.
Keywords: Pseudo-amenability, inverse semigroup, semigroup algebras
@article{AUPCM_2020_19_a2,
     author = {Sahami, Amir},
     title = {Counter examples for pseudo-amenability of some semigroup algebras},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     pages = {35--38},
     publisher = {mathdoc},
     volume = {19},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a2/}
}
TY  - JOUR
AU  - Sahami, Amir
TI  - Counter examples for pseudo-amenability of some semigroup algebras
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2020
SP  - 35
EP  - 38
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a2/
LA  - en
ID  - AUPCM_2020_19_a2
ER  - 
%0 Journal Article
%A Sahami, Amir
%T Counter examples for pseudo-amenability of some semigroup algebras
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2020
%P 35-38
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a2/
%G en
%F AUPCM_2020_19_a2
Sahami, Amir. Counter examples for pseudo-amenability of some semigroup algebras. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 35-38. http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a2/

[1] Amini, Massoud. "Module amenability for semigroup algebras." Semigroup Forum 69, no. 2 (2004): 243-254.

[2] Amini, Massoud, and Alireza Medghalchi. "Restricted algebras on inverse semigroups. I. Representation theory." Math. Nachr. 279, no. 16 (2006): 1739-1748.

[3] Bodaghi, Abasalt, and Massoud Amini. "Module character amenability of Banach algebras." Arch. Math. (Basel) 99, no. 4 (2012): 353-365.

[4] Bodaghi, Abasalt, and Ali Jabbari. "Module pseudo-amenability of Banach algebras." An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 63, no. 3 (2017): 449-461.

[5] Dales, H. Garth, Anthony To-Ming Lau, and Dona Papert Strauss. "Banach algebras on semigroups and on their compactifications." Mem. Amer. Math. Soc. 205, no. 966 (2010): vi+165 pp.

[6] Essmaili, Morteza, Mehdi Rostami, and Alireza R. Medghalchi. "Pseudocontractibility and pseudo-amenability of semigroup algebras." Arch. Math. (Basel) 97, no. 2 (2011): 167-177.

[7] Essmaili, Morteza, Mehdi Rostami, and Abdolrasoul Pourabbas. "Pseudoamenability of certain semigroup algebras." Semigroup Forum 82, no. 3 (2011): 478-484.

[8] Ghahramani, Fereidoun, and Yong Zhang. "Pseudo-amenable and pseudocontractible Banach algebras." Math. Proc. Cambridge Philos. Soc. 142, no. 1 (2007): 111-123.

[9] Ghahramani, Fereidoun, and Richard J. Loy. "Generalized notions of amenability." J. Funct. Anal. 208, no. 1 (2004): 229-260.

[10] Ghahramani, Fereidoun, Richard J. Loy, and Yong Zhang. "Generalized notions of amenability. II." J. Funct. Anal. 254, no. 7 (2008): 1776-1810.

[11] Ogunsola, Olufemi J., and Ifeyinwa E. Daniel. "Pseudo-amenability and pseudocontractibility of restricted semigroup algebra." Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018): 89-102.

[12] Runde, Volker. Lectures on amenability. Vol. 1774 of Lecture Notes in Mathematics. New York: Springer-Verlag, 2002.

[13] Samei, Ebrahim, Nico Spronk, and Ross Stokke. "Biflatness and pseudoamenability of Segal algebras." Canad. J. Math. 62, no. 4 (2010): 845-869.

[14] Zhang, Yong. Solved and unsolved problems in generalized notions of amenability for Banach algebras. Vol. 91 of Banach Center Publications. Warszawa: Inst. Mat. Pol. Acad. Sci., 2010.