Almost convergent sequence spaces derived by the domain of quadruple band matrix
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 155-170.

Voir la notice de l'article provenant de la source Library of Science

In this work, we construct the sequence spaces f(Q(r,s,t,u)), f_0(Q(r,s,t,u)) and f_s(Q(r,s,t,u)), where Q(r,s,t,u) is quadruple band matrix which generalizes the matrices Δ^3, B(r,s,t), Δ^2, B(r,s) and Δ, where Δ^3, B(r,s,t), Δ^2, B(r,s) and Δ are called third order difference, triple band, second order difference, double band and difference matrix, respectively. Also, we prove that these spaces are BK-spaces and are linearly isomorphic to the sequence spaces f, f_0 and f_s, respectively. Moreover, we give the Schauder basis and β-, γ-duals of those spaces. Lastly, we characterize some matrix classes related to those spaces.
Keywords: matrix domain, Schauder basis, beta- and gamma-duals, Banach Limits, almost convergence and matrix classes
@article{AUPCM_2020_19_a11,
     author = {Bi\c{s}gin, Mustafa Cemil},
     title = {Almost convergent sequence spaces derived by the domain of quadruple band matrix},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     pages = {155--170},
     publisher = {mathdoc},
     volume = {19},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a11/}
}
TY  - JOUR
AU  - Bişgin, Mustafa Cemil
TI  - Almost convergent sequence spaces derived by the domain of quadruple band matrix
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2020
SP  - 155
EP  - 170
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a11/
LA  - en
ID  - AUPCM_2020_19_a11
ER  - 
%0 Journal Article
%A Bişgin, Mustafa Cemil
%T Almost convergent sequence spaces derived by the domain of quadruple band matrix
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2020
%P 155-170
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a11/
%G en
%F AUPCM_2020_19_a11
Bişgin, Mustafa Cemil. Almost convergent sequence spaces derived by the domain of quadruple band matrix. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 155-170. http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a11/

[1] Ahmad, Zaheer, and Mohammad Mursaleen. "Köthe-Toeplitz duals of some new sequence spaces and their matrix maps." Publ. Inst. Math. (Beograd) (N.S.) 42(56): 57-61.

[2] Bektas, Çigdem Asma, and Rifat Çolak. "On the Köthe-Toeplitz duals of some generalized sets of difference sequences." Demonstratio Math. 33, no. 4 (2000): 797-803.

[3] Basar, Feyzi, and Murat Kirisçi. "Almost convergence and generalized difference matrix." Comput. Math. Appl. 61, no. 3 (2011): 602-611.

[4] Basar, Feyzi, and Rifat Çolak. "Almost-conservative matrix transformations." Doga Mat. 13, no. 3 (1989): 91-100.

[5] Basar, Feyzi. "Strongly-conservative sequence-to-series matrix transformations." Erc Üni Fen Bil Derg. 5, no. 12 (1989): 888-893.

[6] Basar, Feyzi, and Ihsan Solak. "Almost-coercive matrix transformations." Rend. Mat. Appl. (7) 11, no. 2: 249-256.

[7] Basar, Feyzi. "f-conservative matrix sequences." Tamkang J. Math. 22, no. 2 (1991): 205-212.

[8] Basar, Feyzi. Summability Theory and Its Applications. Vol. 44 of Nijhoff International Philosophy Series. Istanbul: Bentham Science Publishers, 2012.

[9] Basar, Feyzi and Hemen Dutta. Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties. Monographs and Research Notes in Mathematics. Boca Raton, London, New York: CRC Press, Taylor Francis Group, 2020.

[10] Basarir, Metin and Mustafa Kayikçi. On the generalized Bm-Riesz difference sequence space and beta-property. J. Inequal. Appl. 2009, Art. ID 385029.

[11] Bektas, Çigdem Asma. "On some new generalized sequence spaces." J. Math. Anal. Appl. 277, no. 2 (2003): 681-688.

[12] Boos, Johann. Classical and Modern Methods in Summability. Oxford Mathematical Monographs. New York: Oxford University Press Inc., 2000.

[13] Choudhary, B., and Sudarsan Nanda. Functional Analysis with Applications. New York: John Wiley sons Inc., 1989.

[14] Duran, J. Peter. "Infinite matrices and almost-convergence." Math. Z. 128 (1972): 75-83.

[15] Et, Mikâil, and Rifat Çolak. "On some generalized difference sequence spaces." Soochow J. Math. 21, no. 4 (1995): 377-386.

[16] Et, Mikâil. "On some difference sequence spaces." Doga Mat. 17, no. 1 (1993): 18-24.

[17] Jarrah, Abdullah M., and Eberhard Malkowsky. "BK spaces, bases and linear operators." Rend. Circ. Mat. Palermo (2) Suppl. No.52 (1998): 177-191.

[18] Kızmaz, Hüsnü. "On certain sequence spaces." Canad. Math. Bull. 24, no. 2 (1981): 169-176.

[19] King, Jerry Porter "Almost summable sequences." Proc. Amer. Math. Soc. 17 (1966): 1219-1225.

[20] Kirisçi, Murat, and Feyzi Basar. "Some new sequence spaces derived by the domain of generalized difference matrix." Comput. Math. Appl. 60, no. 5 (2010): 1299-1309.

[21] Lorentz, George Gunther. "A contribution to the theory of divergent sequences." Acta Math. 80 (1948): 167-190.

[22] Maddox, Ivor John. Elements of Functional Analysis. Cambridge, New York, New Rochelle, Melbourne, Sydney: Cambridge University Press, 1988.

[23] Mursaleen, Mohammad. "Generalized spaces of difference sequences." J. Math. Anal. Appl. 203, no. 3 (1996): 738-745.

[24] Mursaleen, Mohammad. Applied Summability Methods. Heidelberg, New York, Dordrecht, London: Springer Briefs, 2014.

[25] Mursaleen, Mohammad and Basar, Feyzi. Sequence Spaces: Topics in Modern Summability Theory. Boca Raton, London, New York: CRC Press, Taylor Francis Group, 2020.

[26] Öztürk, Ekrem. "On strongly regular dual summability methods." Comm. Fac. Sci. Univ. Ankara Sér. A1 Math. 32, no. 1 (1983): 1-5.

[27] Siddiqi, Jamil Ahmad. "Infinite matrices summing every almost periodic sequence." Pacific J. Math. 39 (1971): 235-251.

[28] Sönmez, Abdulcabbar. "Some new sequence spaces derived by the domain of the triple band matrix." Comput. Math. Appl. 62, no. 2 (2011): 641-650.

[29] Sönmez, Abdulcabbar. "Almost convergence and triple band matrix." Math. Comput. Model. 57, no. 9-10 (2013): 2393-2402.

[30] Wilansky, Albert. Summability Through Functional Analysis. Vol. 85 of North-Holland Mathematics Studies. Amsterdam, New York, Oxford: Elsevier Science Publishers, 1984.