@article{AUPCM_2020_19_a1,
author = {Pasteczka, Pawe{\l}},
title = {Jensen-type geometric shapes},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
pages = {27--33},
year = {2020},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a1/}
}
Pasteczka, Paweł. Jensen-type geometric shapes. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 27-33. http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a1/
[1] de la Cal, Jesús and Javier Cárcamo. "Multidimensional Hermite-Hadamard inequalities and the convex order." J. Math. Anal. Appl. 324, no. 1 (2006): 248-261.
[2] de la Cal, Jesús, Javier Cárcamo and Luis Escauriaza. "A general multidimensional Hermite-Hadamard type inequality." J. Math. Anal. Appl. 356, no. 2 (2009): 659-663.
[3] Cover, Thomas M. and Joy A. Thomas. Elements of Information Theory 2nd ed. New York: Wiley-Interscience, 2006.
[4] Dragomir, Sever Silvestru and Charles E. M. Pearce. Selected Topics on Hermite-Hadamard Inequalities. Victoria University: RGMIA Monographs, 2000.
[5] Niculescu, Constantin P. "The Hermite-Hadamard inequality for convex functions of a vector variable." Math. Inequal. Appl. 5, no. 4 (2002): 619–623.
[6] Niculescu, Constantin P. and Lars-Erik Persson. Convex Functions and their Applications. A Contemporary Approach, 2nd Ed. Vol. 23 of CMS Books in Mathematics. New York: Springer-Verlag, 2018.