Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 17 (2018) Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

Keywords: Caputo fractional derivative, Riemann–Liouville fractional integral, coupled system, existence, uniqueness, fixed point theorem, Hyers–Ulam stability
@article{AUPCM_2018_17_a2,
     author = {Zada, Akbar and Yar, Muhammad and Li, Tongxing},
     title = {Existence and stability analysis of nonlinear sequential coupled system of {Caputo} fractional differential equations with integral boundary conditions},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     year = {2018},
     number = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2018_17_a2/}
}
TY  - JOUR
AU  - Zada, Akbar
AU  - Yar, Muhammad
AU  - Li, Tongxing
TI  - Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2018
IS  - 17
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2018_17_a2/
LA  - en
ID  - AUPCM_2018_17_a2
ER  - 
%0 Journal Article
%A Zada, Akbar
%A Yar, Muhammad
%A Li, Tongxing
%T Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2018
%N 17
%U http://geodesic.mathdoc.fr/item/AUPCM_2018_17_a2/
%G en
%F AUPCM_2018_17_a2
Zada, Akbar; Yar, Muhammad; Li, Tongxing. Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 17 (2018). http://geodesic.mathdoc.fr/item/AUPCM_2018_17_a2/