Voir la notice de l'article provenant de la source Library of Science
@article{AUPCM_2017_16_a4, author = {Argyros, Ioannis K. and George, Santhosh}, title = {Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, publisher = {mathdoc}, number = {16}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUPCM_2017_16_a4/} }
TY - JOUR AU - Argyros, Ioannis K. AU - George, Santhosh TI - Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica PY - 2017 IS - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPCM_2017_16_a4/ LA - en ID - AUPCM_2017_16_a4 ER -
%0 Journal Article %A Argyros, Ioannis K. %A George, Santhosh %T Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative %J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica %D 2017 %N 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPCM_2017_16_a4/ %G en %F AUPCM_2017_16_a4
Argyros, Ioannis K.; George, Santhosh. Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 16 (2017). http://geodesic.mathdoc.fr/item/AUPCM_2017_16_a4/