Several observations about Maneeals - a peculiar system of lines
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 15 (2016) Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

For an arbitrary triangle ABC and an integer n we define points Dn, En, Fn on the sides BC, CA, AB respectively, in such a manner that|AC|n|AB|n=|CDn||BDn|,|AB|n|BC|n=|AEn||CEn|,|BC|n|AC|n=|BFn||AFn|. | AC|^n | AB|^n = | CD_n || BD_n |, | AB|^n | BC|^n = | AE_n || CE_n |, | BC|^n | AC|^n = | BF_n || AF_n |.Cevians ADn, BEn, CFn are said to be the Maneeals of order n. In this paper we discuss some properties of the Maneeals and related objects.
Keywords: Maneeals, Maneeal’s Points, Maneeals triangle of order n, Maneeal’s Pedal triangle of order n, Cauchy-Schwarz inequality, Lemoine’s Pedal Triangle Theorem
@article{AUPCM_2016_15_a8,
     author = {Dasari, Naga Vijay Krishna and Kabat, Jakub},
     title = {Several observations about {Maneeals} - a peculiar system of lines},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     year = {2016},
     number = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a8/}
}
TY  - JOUR
AU  - Dasari, Naga Vijay Krishna
AU  - Kabat, Jakub
TI  - Several observations about Maneeals - a peculiar system of lines
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2016
IS  - 15
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a8/
LA  - en
ID  - AUPCM_2016_15_a8
ER  - 
%0 Journal Article
%A Dasari, Naga Vijay Krishna
%A Kabat, Jakub
%T Several observations about Maneeals - a peculiar system of lines
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2016
%N 15
%U http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a8/
%G en
%F AUPCM_2016_15_a8
Dasari, Naga Vijay Krishna; Kabat, Jakub. Several observations about Maneeals - a peculiar system of lines. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 15 (2016). http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a8/