On the superstability of generalized d’Alembert harmonic functions
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 15 (2016) Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

The aim of this paper is to study the superstability problem of the d’Alembert type functional equationf(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) f(x + y + z) + f(x + y + σ (z)) + f(x + σ (y) + z) + f(σ (x) + y + z) = 4f(x)f(y)f(z)for all x, y, z ∈ G, where G is an abelian group and σ : G → G is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.
Keywords: stability, d’Alembert functional equation
@article{AUPCM_2016_15_a5,
     author = {EL-Fassi, Iz-iddine},
     title = {On the superstability of generalized {d{\textquoteright}Alembert} harmonic functions},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     year = {2016},
     number = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a5/}
}
TY  - JOUR
AU  - EL-Fassi, Iz-iddine
TI  - On the superstability of generalized d’Alembert harmonic functions
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2016
IS  - 15
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a5/
LA  - en
ID  - AUPCM_2016_15_a5
ER  - 
%0 Journal Article
%A EL-Fassi, Iz-iddine
%T On the superstability of generalized d’Alembert harmonic functions
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2016
%N 15
%U http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a5/
%G en
%F AUPCM_2016_15_a5
EL-Fassi, Iz-iddine. On the superstability of generalized d’Alembert harmonic functions. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 15 (2016). http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a5/