An integro-differential inequality related to the smallest positive eigenvalue of<i>p</i>(<i>x</i>)-Laplacian Dirichlet problem
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 15 (2016) Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

We consider the eigenvalue problem for the p(x)-Laplace-Beltrami operator on the unit sphere. We prove same integro-differential inequalities related to the smallest positive eigenvalue of this problem.
Keywords: p(x)-Laplacian, eigenvalue, variable exponent Sobolev space, Dirichlet problem, unbounded domain
@article{AUPCM_2016_15_a1,
     author = {Wi\'sniewski, Damian and Bodzioch, Mariusz},
     title = {An integro-differential inequality related to the smallest positive eigenvalue {of&lt;i&gt;p&lt;/i&gt;(&lt;i&gt;x&lt;/i&gt;)-Laplacian} {Dirichlet} problem},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     year = {2016},
     number = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a1/}
}
TY  - JOUR
AU  - Wiśniewski, Damian
AU  - Bodzioch, Mariusz
TI  - An integro-differential inequality related to the smallest positive eigenvalue of<i>p</i>(<i>x</i>)-Laplacian Dirichlet problem
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2016
IS  - 15
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a1/
LA  - en
ID  - AUPCM_2016_15_a1
ER  - 
%0 Journal Article
%A Wiśniewski, Damian
%A Bodzioch, Mariusz
%T An integro-differential inequality related to the smallest positive eigenvalue of<i>p</i>(<i>x</i>)-Laplacian Dirichlet problem
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2016
%N 15
%U http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a1/
%G en
%F AUPCM_2016_15_a1
Wiśniewski, Damian; Bodzioch, Mariusz. An integro-differential inequality related to the smallest positive eigenvalue of<i>p</i>(<i>x</i>)-Laplacian Dirichlet problem. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 15 (2016). http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a1/