Affine analogues of the Sasaki-Shchepetilov connection
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 15 (2016).

Voir la notice de l'article provenant de la source Library of Science

For two-dimensional manifold M with locally symmetric connection ∇ and with ∇-parallel volume element vol one can construct a flat connection on the vector bundle TM ⊕ E, where E is a trivial bundle. The metrizable case, when M is a Riemannian manifold of constant curvature, together with its higher dimension generalizations, was studied by A.V. Shchepetilov [J. Phys. A: 36 (2003), 3893-3898]. This paper deals with the case of non-metrizable locally symmetric connection. Two flat connections on TM ⊕ (ℝ × M) and two on TM ⊕ (ℝ2 × M) are constructed. It is shown that two of those connections – one from each pair – may be identified with the standard flat connection in ℝN, after suitable local affine embedding of (M,∇) into ℝN.
Keywords: connection on a vector bundle, associated vector bundle, connection form, locally symmetric connection
@article{AUPCM_2016_15_a1,
     author = {Robaszewska, Maria},
     title = {Affine analogues of the {Sasaki-Shchepetilov} connection},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     publisher = {mathdoc},
     number = {15},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a1/}
}
TY  - JOUR
AU  - Robaszewska, Maria
TI  - Affine analogues of the Sasaki-Shchepetilov connection
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2016
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a1/
LA  - en
ID  - AUPCM_2016_15_a1
ER  - 
%0 Journal Article
%A Robaszewska, Maria
%T Affine analogues of the Sasaki-Shchepetilov connection
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2016
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a1/
%G en
%F AUPCM_2016_15_a1
Robaszewska, Maria. Affine analogues of the Sasaki-Shchepetilov connection. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 15 (2016). http://geodesic.mathdoc.fr/item/AUPCM_2016_15_a1/