Simple proofs of some generalizations of the Wilson’s theorem
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014)
Cet article a éte moissonné depuis la source Library of Science
In this paper a remarkable simple proof of the Gauss’s generalization of the Wilson’s theorem is given. The proof is based on properties of a subgroup generated by element of order 2 of a finite abelian group. Some conditions equivalent to the cyclicity of (Φ(n), ·n), where n > 2 is an integer are presented, in particular, a condition for the existence of the unique element of order 2 in such a group.
@article{AUPCM_2014_13_a8,
author = {G\'orowski, Jan and {\L}omnicki, Adam},
title = {Simple proofs of some generalizations of the {Wilson{\textquoteright}s} theorem},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
year = {2014},
number = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/}
}
Górowski, Jan; Łomnicki, Adam. Simple proofs of some generalizations of the Wilson’s theorem. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/
[1] Lin Cong, Zhipeng Li, On Wilson’s theorem and Polignac conjecture, Math. Medley 32 (2005), 11-16. (arXiv:math/0408018v1). Cited on 7.
[2] J.B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson theorem, Integers 8 (2008), A39, 15pp. Cited on 7 and 13.
[3] M. Hassani, M. Momeni-Pour, Euler type generalization of Wilson’s theorem, arXiv:math/0605705v1 28 May, 2006. Cited on 10.
[4] G.A. Miller, A new proof of the generalized Wilson’s theorem, Ann. of Math. (2) 4 (1903), 188-190. Cited on 7.