Voir la notice de l'article provenant de la source Library of Science
@article{AUPCM_2014_13_a8, author = {G\'orowski, Jan and {\L}omnicki, Adam}, title = {Simple proofs of some generalizations of the {Wilson{\textquoteright}s} theorem}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, publisher = {mathdoc}, number = {13}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/} }
TY - JOUR AU - Górowski, Jan AU - Łomnicki, Adam TI - Simple proofs of some generalizations of the Wilson’s theorem JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica PY - 2014 IS - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/ LA - en ID - AUPCM_2014_13_a8 ER -
Górowski, Jan; Łomnicki, Adam. Simple proofs of some generalizations of the Wilson’s theorem. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/
[1] Lin Cong, Zhipeng Li, On Wilson’s theorem and Polignac conjecture, Math. Medley 32 (2005), 11-16. (arXiv:math/0408018v1). Cited on 7.
[2] J.B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson theorem, Integers 8 (2008), A39, 15pp. Cited on 7 and 13.
[3] M. Hassani, M. Momeni-Pour, Euler type generalization of Wilson’s theorem, arXiv:math/0605705v1 28 May, 2006. Cited on 10.
[4] G.A. Miller, A new proof of the generalized Wilson’s theorem, Ann. of Math. (2) 4 (1903), 188-190. Cited on 7.