Simple proofs of some generalizations of the Wilson’s theorem
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014).

Voir la notice de l'article provenant de la source Library of Science

In this paper a remarkable simple proof of the Gauss’s generalization of the Wilson’s theorem is given. The proof is based on properties of a subgroup generated by element of order 2 of a finite abelian group. Some conditions equivalent to the cyclicity of (Φ(n), ·n), where n > 2 is an integer are presented, in particular, a condition for the existence of the unique element of order 2 in such a group.
@article{AUPCM_2014_13_a8,
     author = {G\'orowski, Jan and {\L}omnicki, Adam},
     title = {Simple proofs of some generalizations of the {Wilson{\textquoteright}s} theorem},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     publisher = {mathdoc},
     number = {13},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/}
}
TY  - JOUR
AU  - Górowski, Jan
AU  - Łomnicki, Adam
TI  - Simple proofs of some generalizations of the Wilson’s theorem
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2014
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/
LA  - en
ID  - AUPCM_2014_13_a8
ER  - 
%0 Journal Article
%A Górowski, Jan
%A Łomnicki, Adam
%T Simple proofs of some generalizations of the Wilson’s theorem
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2014
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/
%G en
%F AUPCM_2014_13_a8
Górowski, Jan; Łomnicki, Adam. Simple proofs of some generalizations of the Wilson’s theorem. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/

[1] Lin Cong, Zhipeng Li, On Wilson’s theorem and Polignac conjecture, Math. Medley 32 (2005), 11-16. (arXiv:math/0408018v1). Cited on 7.

[2] J.B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson theorem, Integers 8 (2008), A39, 15pp. Cited on 7 and 13.

[3] M. Hassani, M. Momeni-Pour, Euler type generalization of Wilson’s theorem, arXiv:math/0605705v1 28 May, 2006. Cited on 10.

[4] G.A. Miller, A new proof of the generalized Wilson’s theorem, Ann. of Math. (2) 4 (1903), 188-190. Cited on 7.