Simple proofs of some generalizations of the Wilson’s theorem
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014) Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

In this paper a remarkable simple proof of the Gauss’s generalization of the Wilson’s theorem is given. The proof is based on properties of a subgroup generated by element of order 2 of a finite abelian group. Some conditions equivalent to the cyclicity of (Φ(n), ·n), where n > 2 is an integer are presented, in particular, a condition for the existence of the unique element of order 2 in such a group.
@article{AUPCM_2014_13_a8,
     author = {G\'orowski, Jan and {\L}omnicki, Adam},
     title = {Simple proofs of some generalizations of the {Wilson{\textquoteright}s} theorem},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     year = {2014},
     number = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/}
}
TY  - JOUR
AU  - Górowski, Jan
AU  - Łomnicki, Adam
TI  - Simple proofs of some generalizations of the Wilson’s theorem
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2014
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/
LA  - en
ID  - AUPCM_2014_13_a8
ER  - 
%0 Journal Article
%A Górowski, Jan
%A Łomnicki, Adam
%T Simple proofs of some generalizations of the Wilson’s theorem
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2014
%N 13
%U http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/
%G en
%F AUPCM_2014_13_a8
Górowski, Jan; Łomnicki, Adam. Simple proofs of some generalizations of the Wilson’s theorem. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a8/

[1] Lin Cong, Zhipeng Li, On Wilson’s theorem and Polignac conjecture, Math. Medley 32 (2005), 11-16. (arXiv:math/0408018v1). Cited on 7.

[2] J.B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson theorem, Integers 8 (2008), A39, 15pp. Cited on 7 and 13.

[3] M. Hassani, M. Momeni-Pour, Euler type generalization of Wilson’s theorem, arXiv:math/0605705v1 28 May, 2006. Cited on 10.

[4] G.A. Miller, A new proof of the generalized Wilson’s theorem, Ann. of Math. (2) 4 (1903), 188-190. Cited on 7.