Perturbation of Toeplitz operators and reflexivity
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014) Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

It was shown that the space of Toeplitz operators perturbated by finite rank operators is 2-hyperreflexive.
@article{AUPCM_2014_13_a6,
     author = {Kli\'s-Garlicka, Kamila},
     title = {Perturbation of {Toeplitz} operators and reflexivity},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     year = {2014},
     number = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a6/}
}
TY  - JOUR
AU  - Kliś-Garlicka, Kamila
TI  - Perturbation of Toeplitz operators and reflexivity
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2014
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a6/
LA  - en
ID  - AUPCM_2014_13_a6
ER  - 
%0 Journal Article
%A Kliś-Garlicka, Kamila
%T Perturbation of Toeplitz operators and reflexivity
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2014
%N 13
%U http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a6/
%G en
%F AUPCM_2014_13_a6
Kliś-Garlicka, Kamila. Perturbation of Toeplitz operators and reflexivity. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a6/

[1] N.T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233. Cited on 17.[Crossref]

[2] N.T. Arveson, Ten lectures on operator algebras, CBMS Regional Conference Series in Mathematics 55, Amer. Math. Soc., Providence (1984). Cited on 16.

[3] E.A. Azoff, M. Ptak, A dichotomy for linear spaces of Toeplitz operators, J. Funct. Anal. 156 (1998), 411-428. Cited on 16.[Crossref]

[4] K. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math. 31 (1987), 265-273. Cited on 17.

[5] P.R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London 1967. Cited on 16.

[6] K. Klis-Garlicka, Rank-one perturbation of Toeplitz operators and reflexivity, Opuscula Math. 32 (2012), 505-509. Cited on 15 and 16.

[7] K. Klis, M. Ptak, k-hyperreflexive subspaces, Houston J. Math. 32 (2006), 299-313. Cited on 16 and 17.

[8] J. Kraus, D. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory, 13 (1985), 227-236. Cited on 16.

[9] J. Kraus, D. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53 (1986), 340-356. Cited on 15 and 16.

[10] W.E. Longstaff, On the operation Alg Lat in finite dimensions, Linear Algebra Appl. 27 (1979), 27-29. Cited on 15.[Crossref]

[11] H. Mustafayev, On hyper-reflexivity of some operator spaces, Internat. J. Math. Math. Sci., 19 (1996), 603-606. Cited on 17.[Crossref]