Perturbation of Toeplitz operators and reflexivity
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014).

Voir la notice de l'article provenant de la source Library of Science

It was shown that the space of Toeplitz operators perturbated by finite rank operators is 2-hyperreflexive.
@article{AUPCM_2014_13_a6,
     author = {Kli\'s-Garlicka, Kamila},
     title = {Perturbation of {Toeplitz} operators and reflexivity},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     publisher = {mathdoc},
     number = {13},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a6/}
}
TY  - JOUR
AU  - Kliś-Garlicka, Kamila
TI  - Perturbation of Toeplitz operators and reflexivity
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2014
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a6/
LA  - en
ID  - AUPCM_2014_13_a6
ER  - 
%0 Journal Article
%A Kliś-Garlicka, Kamila
%T Perturbation of Toeplitz operators and reflexivity
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2014
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a6/
%G en
%F AUPCM_2014_13_a6
Kliś-Garlicka, Kamila. Perturbation of Toeplitz operators and reflexivity. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a6/

[1] N.T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233. Cited on 17.[Crossref]

[2] N.T. Arveson, Ten lectures on operator algebras, CBMS Regional Conference Series in Mathematics 55, Amer. Math. Soc., Providence (1984). Cited on 16.

[3] E.A. Azoff, M. Ptak, A dichotomy for linear spaces of Toeplitz operators, J. Funct. Anal. 156 (1998), 411-428. Cited on 16.[Crossref]

[4] K. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math. 31 (1987), 265-273. Cited on 17.

[5] P.R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London 1967. Cited on 16.

[6] K. Klis-Garlicka, Rank-one perturbation of Toeplitz operators and reflexivity, Opuscula Math. 32 (2012), 505-509. Cited on 15 and 16.

[7] K. Klis, M. Ptak, k-hyperreflexive subspaces, Houston J. Math. 32 (2006), 299-313. Cited on 16 and 17.

[8] J. Kraus, D. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory, 13 (1985), 227-236. Cited on 16.

[9] J. Kraus, D. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53 (1986), 340-356. Cited on 15 and 16.

[10] W.E. Longstaff, On the operation Alg Lat in finite dimensions, Linear Algebra Appl. 27 (1979), 27-29. Cited on 15.[Crossref]

[11] H. Mustafayev, On hyper-reflexivity of some operator spaces, Internat. J. Math. Math. Sci., 19 (1996), 603-606. Cited on 17.[Crossref]