On the gluing of hyperconvex metrics and diversities
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014) Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

In this work we consider two hyperconvex diversities (or hyperconvex metric spaces) (X, δX) and (Y, δY ) with nonempty intersection and we wonder whether there is a natural way to glue them so that the new glued diversity (or metric space) remains being hyperconvex. We provide positive and negative answers in both situations.
@article{AUPCM_2014_13_a5,
     author = {Pi\k{a}tek, Bo\.zena},
     title = {On the gluing of hyperconvex metrics and diversities},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     year = {2014},
     number = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a5/}
}
TY  - JOUR
AU  - Piątek, Bożena
TI  - On the gluing of hyperconvex metrics and diversities
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2014
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a5/
LA  - en
ID  - AUPCM_2014_13_a5
ER  - 
%0 Journal Article
%A Piątek, Bożena
%T On the gluing of hyperconvex metrics and diversities
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2014
%N 13
%U http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a5/
%G en
%F AUPCM_2014_13_a5
Piątek, Bożena. On the gluing of hyperconvex metrics and diversities. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a5/

[1] N. Aronszajn, P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. Cited on 66 and 75.

[2] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer-Verlag, Berlin, 1999. Cited on 70.

[3] D. Bryant, P.F. Tupper, Hyperconvexity and tight-span theory for diversities, Adv. Math. 231 (2012), no. 6, 3172-3198. Cited on 65, 66, 67, 71 and 74.[WoS]

[4] A.W.M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. in Math. 53 (1984), no. 3, 321-402. Cited on 65.

[5] R. Espínola, B. Piatek, Diversities, hyperconvexity and fixed points, Nonlinear Anal. 95 (2014), 229-245. Cited on 65, 66 and 67.[WoS]

[6] R. Espínola, A. Fernández León, Fixed Point Theory in Hyperconvex Metric Spaces, Topics in Fixed Point Theory, 101-158, Springer, Berlin, 2013. Cited on 66 and 71.

[7] R. Espínola, M.A. Khamsi, Introduction to hyperconvex spaces, Handbook of metric fixed point theory, 391-435, Kluwer Acad. Publ., Dordrecht, 2001. Cited on 66, 71, 74 and 75.

[8] D. Faith, Conservation evaluation and phylogenetic diversity, Biol. Conserv. 61 (1992), 1-10. Cited on 65.

[9] J.R Isbell, Injective envelopes of Banach spaces are rigidly attached, Bull. Amer. Math. Soc. 70 (1964), 727-729. Cited on 65 and 74.