On the gluing of hyperconvex metrics and diversities
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014).

Voir la notice de l'article provenant de la source Library of Science

In this work we consider two hyperconvex diversities (or hyperconvex metric spaces) (X, δX) and (Y, δY ) with nonempty intersection and we wonder whether there is a natural way to glue them so that the new glued diversity (or metric space) remains being hyperconvex. We provide positive and negative answers in both situations.
@article{AUPCM_2014_13_a5,
     author = {Pi\k{a}tek, Bo\.zena},
     title = {On the gluing of hyperconvex metrics and diversities},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     publisher = {mathdoc},
     number = {13},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a5/}
}
TY  - JOUR
AU  - Piątek, Bożena
TI  - On the gluing of hyperconvex metrics and diversities
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2014
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a5/
LA  - en
ID  - AUPCM_2014_13_a5
ER  - 
%0 Journal Article
%A Piątek, Bożena
%T On the gluing of hyperconvex metrics and diversities
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2014
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a5/
%G en
%F AUPCM_2014_13_a5
Piątek, Bożena. On the gluing of hyperconvex metrics and diversities. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a5/

[1] N. Aronszajn, P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. Cited on 66 and 75.

[2] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer-Verlag, Berlin, 1999. Cited on 70.

[3] D. Bryant, P.F. Tupper, Hyperconvexity and tight-span theory for diversities, Adv. Math. 231 (2012), no. 6, 3172-3198. Cited on 65, 66, 67, 71 and 74.[WoS]

[4] A.W.M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. in Math. 53 (1984), no. 3, 321-402. Cited on 65.

[5] R. Espínola, B. Piatek, Diversities, hyperconvexity and fixed points, Nonlinear Anal. 95 (2014), 229-245. Cited on 65, 66 and 67.[WoS]

[6] R. Espínola, A. Fernández León, Fixed Point Theory in Hyperconvex Metric Spaces, Topics in Fixed Point Theory, 101-158, Springer, Berlin, 2013. Cited on 66 and 71.

[7] R. Espínola, M.A. Khamsi, Introduction to hyperconvex spaces, Handbook of metric fixed point theory, 391-435, Kluwer Acad. Publ., Dordrecht, 2001. Cited on 66, 71, 74 and 75.

[8] D. Faith, Conservation evaluation and phylogenetic diversity, Biol. Conserv. 61 (1992), 1-10. Cited on 65.

[9] J.R Isbell, Injective envelopes of Banach spaces are rigidly attached, Bull. Amer. Math. Soc. 70 (1964), 727-729. Cited on 65 and 74.