On generalized M-projectively recurrent manifolds
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014).

Voir la notice de l'article provenant de la source Library of Science

The purpose of the present paper is to study generalized M-projectively recurrent manifolds. Some geometric properties of generalized M projectively recurrent manifolds have been studied under certain curvature conditions. An application of such a manifold in the theory of relativity has also been shown. Finally, we give an example of a generalized M-projectively recurrent manifold.
@article{AUPCM_2014_13_a3,
     author = {Chand De, Uday and Pal, Prajjwal},
     title = {On generalized {M-projectively} recurrent manifolds},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     publisher = {mathdoc},
     number = {13},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a3/}
}
TY  - JOUR
AU  - Chand De, Uday
AU  - Pal, Prajjwal
TI  - On generalized M-projectively recurrent manifolds
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2014
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a3/
LA  - en
ID  - AUPCM_2014_13_a3
ER  - 
%0 Journal Article
%A Chand De, Uday
%A Pal, Prajjwal
%T On generalized M-projectively recurrent manifolds
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2014
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a3/
%G en
%F AUPCM_2014_13_a3
Chand De, Uday; Pal, Prajjwal. On generalized M-projectively recurrent manifolds. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a3/

[1] T. Adati, T. Miyazawa, On Riemannian space with recurrent conformal curvature, Tensor (N.S.)18 (1967), 348-354. Cited on 77.

[2] K. Arslan, U.C. De, C. Murathan, A. Yildiz, On generalized recurrent Riemannian manifolds, Acta Math. Hungar. 123 (2009), no. 1-2, 27-39. Cited on 78.[WoS]

[3] R.L. Bishop, B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. Cited on 92.[Crossref]

[4] E. Cartan, Sur une classe remarquable d’espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214-264. Cited on 77.

[5] M.C. Chaki, Some theorems on recurrent and Ricci-recurrent spaces, Rend. Sem. Mat. Univ. Padova 26 (1956), 168-176. Cited on 78.

[6] M.C. Chaki, B. Gupta, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113-122. Cited on 77.

[7] M.C. Chaki,On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53-58. Cited on 77.

[8] S.K. Chaubey, R.H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold Differ. Geom. Dyn. Syst. 12 (2010), 52-60. Cited on 79.

[9] S.K. Chaubey, On weakly m-projectively symmetric manifolds, Novi Sad J. Math. 42 (2012), no. 1, 67-79. Cited on 79.

[10] U.C. De, A.K. Gazi, On generalized concircularly recurrent manifolds, Studia Sci. Math. Hungar. 46 (2009), no. 2, 287-296. Cited on 79.

[11] U.C. De, N. Guha, On generalised recurrent manifolds, Proc. Math. Soc. 7 (1991), 7-11. Cited on 78.

[12] U.C. De, N. Guha, D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor (N.S.) 56 (1995), no. 3, 312-317. Cited on 78.

[13] U.C. De, S. Mallick, Spacetimes admitting M-projective curvature tensor, Bulg. J. Phys. 39 (2012), no. 4, 331-338. Cited on 79.

[14] L.P. Eisenhart, Riemannian Geometry, 2d printing, Princeton University Press, Princeton, N. J., 1949. Cited on 84.

[15] D. Ghosh, On projective recurrent spaces of second order, Acad. Roy. Belg. Bull. Cl. Sci. (5) 56 (1970) 1093-1099. Cited on 77.

[16] M. Hotlos, On conformally symmetric warped products, Ann. Acad. Pedagog. Crac. Stud. Math. 4 (2004), 75-85. Cited on 93.

[17] G.I. Kruckovic, On semireducible Riemannian spaces (Russian), Dokl. Akad. Nauk SSSR (N.S.) 115 (1957), 862-865. Cited on 92.

[18] A. Lichnerowicz, Courbure, nombres de Betti, et espaces symétriques (French), Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pp. 216-223. Amer. Math. Soc., Providence, R. I., 1952. Cited on 77.

[19] S. Mallick, A. De, U.C. De, On generalized Ricci recurrent manifolds with applications to relativity, Proc. Nat. Acad. Sci. India Sect. A 83 (2013), no. 2, 143-152. Cited on 78.

[20] C.A. Mantica, Y.J. Suh, Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds, Balkan J. Geom. Appl. 16 (2011), no. 1, 66-77. Cited on 79.

[21] N. Mazumder, R. Biswas, S. Chakraborty, Cosmological evolution across phantom crossing and the nature of the horizons, Astrophys Space Sci 334 (2011), 183-186. Cited on 96.[WoS]

[22] B. O’Neill, Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Cited on 77 and 95.

[23] C. Özgür, On generalized recurrent Kenmotsu manifolds, World Appl. Sci. J.2 (2007), no. 1, 9-33. Cited on 78.

[24] C. Özgür, On generalized recurrent contact metric manifolds, Indian J. Math. 50 (2008), no. 1, 11-19. Cited on 78.

[25] C. Özgür, On generalized recurrent Lorentzian para-Sasakian manifolds, Int. J. Appl. Math. Stat. 13 (2008), No. D08, 92-97. Cited on 78.

[26] E.M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc. 27 (1952), 287-295. Cited on 77 and 78.[Crossref]

[27] G.P. Pokhariyal, R.S. Mishra, Curvature tensors and their relativistic significance. II, Yokohama Math. J. 19 (1971), no. 2, 97-103. Cited on 79.

[28] N. Prakash, A note on Ricci-recurrent and recurrent spaces Bull. Calcutta Math. Soc. 54 (1962) 1-7. Cited on 78.

[29] W. Roter, On conformally symmetric Ricci-recurrent spaces Colloq. Math. 31 (1974), 87-96. Cited on 77 and 78.

[30] H.S. Ruse, A classification of K*-spaces, Proc. London Math. Soc. (2) 53 (1951), 212-229. Cited on 78.[Crossref]

[31] R.K. Sachs, H. Wu, General relativity for mathematicians, Graduate Texts in Mathematics, Vol. 48, Springer-Verlag, New York-Heidelberg, 1977. Cited on 95.

[32] J.A. Schouten, Ricci-calculus. An introduction to tensor analysis and its geometrical applications, 2d. ed., Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd X. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954. Cited on 86 and 88.

[33] J.P. Singh, On m-projective recurrent Riemannian manifold (English summary), Int. J. Math. Anal. (Ruse) 6 (2012), no. 21-24, 1173-1178. Cited on 79.

[34] R.N. Singh, S.K. Pandey, On the m-projective curvature tensor of generalized Sasakian space forms, to appear in Bull. Math. Anal. Appl. Cited on 79.

[35] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Hertl, Exact solutions of Einstein’s field equations. Second edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003. Cited on 96.

[36] A.G. Walker, On Ruse’s spaces of recurrent curvature, Proc. London Math. Soc. (2) 52 (1950), 36-64. Cited on 77 and 78.[Crossref]

[37] S. Yamaguchi, M. Matsumoto, On Ricci-recurrent spaces, Tensor (N.S.) 19 (1968), 64-68. Cited on 78.

[38] K. Yano, M. Kon, Structures on manifolds, Series in Pure Mathematics 3, World Scientific Publishing Co., Singapore, 1984. Cited on 89