Generalized perturbed Ostrowski-type inequalities
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 2, pp. 13-29.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we present new perturbed inequalities of Ostrowski-type, for twice differentiable functions with absolutely continuous first derivative and second-order derivative in some L^p-space for 1≤ p≤∞.
Keywords: Ostrowski’s inequality, perturbed inequality, twice differentiable
@article{AUM_2021_75_2_a1,
     author = {Bohner, Martin and Khan, Asif and Khan, Maria and Mehmood, Faraz and Shaikh, Muhammad Awais},
     title = {Generalized perturbed {Ostrowski-type} inequalities},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     pages = {13--29},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a1/}
}
TY  - JOUR
AU  - Bohner, Martin
AU  - Khan, Asif
AU  - Khan, Maria
AU  - Mehmood, Faraz
AU  - Shaikh, Muhammad Awais
TI  - Generalized perturbed Ostrowski-type inequalities
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2021
SP  - 13
EP  - 29
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a1/
LA  - en
ID  - AUM_2021_75_2_a1
ER  - 
%0 Journal Article
%A Bohner, Martin
%A Khan, Asif
%A Khan, Maria
%A Mehmood, Faraz
%A Shaikh, Muhammad Awais
%T Generalized perturbed Ostrowski-type inequalities
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2021
%P 13-29
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a1/
%G en
%F AUM_2021_75_2_a1
Bohner, Martin; Khan, Asif; Khan, Maria; Mehmood, Faraz; Shaikh, Muhammad Awais. Generalized perturbed Ostrowski-type inequalities. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 2, pp. 13-29. http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a1/

[1] Anastassiou, G. A., Multivariate Ostrowski type inequalities, Acta Math. Hungar. 76 (4) (1997), 267–278.

[2] Anastassiou, G. A., Complex multivariate Fink type identity applied to complex multivariate Ostrowski and Gruss inequalities, Indian J. Math. 61 (2) (2019), 199–237.

[3] Barnett, N. S., Cerone, P., Dragomir, S. S., Roumeliotis, J., Sofo, A., A survey on Ostrowski type inequalities for twice differentiable mappings and applications, in: Inequality theory and applications. Vol. I, Nova Sci. Publ., Huntington, NY, 2001, 33–85.

[4] Bohner, M., Matthews, T., Ostrowski inequalities on time scales, JIPAM. J. Inequal. Pure Appl. Math. 9 (1) (2008), Art. 6, 8 pp.

[5] Bohner, M., Matthews, T., and Tuna, A., Weighted Ostrowski–Gruss inequalities on time scales, Afr. Diaspora J. Math. 12 (1) (2011), 89–99.

[6] Cerone, P., Dragomir, S. S., Trapezoidal-type rules from an inequalities point of view, in: Handbook of analytic-computational methods in applied mathematics, Chapman Hall/CRC, Boca Raton, FL, 2000, 65–134.

[7] Cerone, P., Dragomir, S. S., and Roumeliotis, J., An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, East Asian Math. J. 15 (1) (1999), 1–9.

[8] Cerone, P., Dragomir, S. S., and Roumeliotis, J., An inequality of Ostrowski type for mappings whose second derivatives belong to L1(a; b) and applications, Honam Math. J. 21 (1) (1999), 127–137.

[9] Cerone, P., Dragomir, S. S., and Roumeliotis, J., An Ostrowski type inequality for mappings whose second derivatives belong to Lp(a, b) and applications, J. Indian Math. Soc. (N.S.) 67 (1–4) (2000), 59–67.

[10] Cheng, X.-L., Improvement of some Ostrowski–Gruss type inequalities, Comput. Math. Appl. 42 (1–2) (2001), 109–114.

[11] Dragomir, S. S., Sofo, A., An integral inequality for twice differentiable mappings and applications, Tamkang J. Math. 31 (4) (2000), 257–266.

[12] Dragomir, S. S., Wang, S., An inequality of Ostrowski–Gruss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl. 33 (11) (1997), 15–20.

[13] Erden, S., Budak, H., Sarikaya, M. Z., Iftikhar, S., and Kumam, P., Fractional Ostrowski type inequalities for bounded functions, J. Inequal. Appl. 2020, Paper No. 123, 11 pp.

[14] Kermausuor S., A generalization of Ostrowski’s inequality for functions of bounded variation via a parameter, Aust. J. Math. Anal. Appl. 16 (1) (2019), Art. 16, 12 pp.

[15] Kermausuor, S., Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals, J. Nonlinear Sci. Appl. 12 (8) (2019), 509–522.

[16] Kermausuor, S., Nwaeze, E. R., New generalized 2D Ostrowski type inequalities on time scales with \(k^2\) points using a parameter. Filomat 32 (9) (2018), 3155–3169.

[17] Kermausuor, S., Nwaeze, E. R., New Ostrowski and Ostrowski–Gruss type inequalities for double integrals on time scales involving a combination of \(\Delta\)-integral means, Tamkang J. Math. 49 (4) (2018), 277–289.

[18] Kvesic, L., Pecaric, J., and Ribicic Penava, M., Generalizations of Ostrowski type inequalities via Hermite polynomials, J. Inequal. Appl. 2020, Paper No. 176, 14 pp.

[19] Liu, Z., Some Ostrowski type inequalities, Math. Comput. Modelling 48 (5–6) (2008), 949–960.

[20] Masjed-Jamei, M., Dragomir, S. S., A generalization of the Ostrowski–Gruss inequality, Anal. Appl. (Singap.) 12 (2) (2014), 117–130.

[21] Matic, M., Pecaric, J., and Ujevic, N., Improvement and further generalization of inequalities of Ostrowski–Gruss type, Comput. Math. Appl. 39 (3–4) (2000), 161–175.

[22] Milovanovic, G. V., Pecaric, J. E., On generalization of the inequality of A. Ostrowski and some related applications, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (544–576) (1976), 155–158.

[23] Nwaeze, E., R., Kaplan, N., Gozde Tuna, F., and Tuna, A., Some new inequalities of the Ostrowski–Gruss, Cebysev, and trapezoid types on time scales. J. Nonlinear Sci. Appl. 12 (4) (2019), 192–205.

[24] Nwaeze, E., R., Kermausuor, S., Generalization of Ostrowski kind inequality for double integrals on time scales, J. Inequal. Spec. Funct. 10 (4) (2019), 35–50.

[25] Ostrowski, A., Uber die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv. 10 (1) (1937), 226–227.

[26] Pachpatte, D. B., Some Ostrowski type inequalities for double integrals on time scales, Acta Appl. Math. 161 (2019), 1–11.

[27] Rafiq, A., Mir, N. A., An Ostrowski type inequality for p-norms, JIPAM. J. Inequal. Pure Appl. Math. 7 (3) (2006), Art. 112, 7 pp.

[28] Ujevic, N., A generalization of Ostrowski’s inequality and applications in numerical integration, Appl. Math. Lett. 17 (2) (2004), 133–137.

[29] Zafar, F., Some generalizations of Ostrowski inequalities and their applications to numerical integration and special means, PhD thesis, Bahauddin Zakariya University, Multan, Pakistan, 2010.