On lifting of 2-vector fields to \(r\)-jet prolongation of the tangent bundle
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 1, pp. 61-67.

Voir la notice de l'article provenant de la source Library of Science

If m ≥ 3 and r ≥ 1, we prove that any natural linear operator A lifting 2-vector fields Λ∈Γ (⋀^2 TM) (i.e., skew-symmetric tensor fields of type (2,0)) on m-dimensional manifolds M into 2-vector fields A(Λ) on r-jet prolongation J^rTM of the tangent bundle TM of M is the zero one.
Keywords: Natural operator, 2-vector field, r-jet prolongation
@article{AUM_2021_75_1_a4,
     author = {Kurek, Jan and Mikulski, W{\l}odzimierz},
     title = {On lifting of 2-vector fields to \(r\)-jet prolongation of the tangent bundle},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     pages = {61--67},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a4/}
}
TY  - JOUR
AU  - Kurek, Jan
AU  - Mikulski, Włodzimierz
TI  - On lifting of 2-vector fields to \(r\)-jet prolongation of the tangent bundle
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2021
SP  - 61
EP  - 67
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a4/
LA  - en
ID  - AUM_2021_75_1_a4
ER  - 
%0 Journal Article
%A Kurek, Jan
%A Mikulski, Włodzimierz
%T On lifting of 2-vector fields to \(r\)-jet prolongation of the tangent bundle
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2021
%P 61-67
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a4/
%G en
%F AUM_2021_75_1_a4
Kurek, Jan; Mikulski, Włodzimierz. On lifting of 2-vector fields to \(r\)-jet prolongation of the tangent bundle. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 1, pp. 61-67. http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a4/

[1] Debecki, J., Linear natural lifting p-vectors to tensors of type (q,0) on Weil bundles, Czechoslovak Math. J. 66(141) (2) (2016), 511–525.

[2] Kolar, I, Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

[3] Mikulski, W. M., The linear natural operators lifting 2-vector fields to some Weil bundles, Note di Math. 19(2) (1999), 213–217.