Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2020_74_2_a1, author = {Dragomir, Sever}, title = {Reverse and improved inequalities for operator monotone functions}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {19--29}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a1/} }
TY - JOUR AU - Dragomir, Sever TI - Reverse and improved inequalities for operator monotone functions JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2020 SP - 19 EP - 29 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a1/ LA - en ID - AUM_2020_74_2_a1 ER -
Dragomir, Sever. Reverse and improved inequalities for operator monotone functions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 2, pp. 19-29. http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a1/
[1] Bhatia, R., Matrix Analysis. Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997.
[2] Fujii, J. I., Seo, Y., On parametrized operator means dominated by power ones, Sci. Math. 1 (1998), 301–306.
[3] Furuta, T., Concrete examples of operator monotone functions obtained by an elementary method without appealing to Lowner integral representation, Linear Algebra Appl. 429 (2008), 972–980.
[4] Furuta, T., Precise lower bound of f(A)-f(B) for A > B > 0 and non-constant operator monotone function f on [0,\infty), J. Math. Inequal. 9 (1) (2015), 47–52.
[5] Heinz, E., Beitrage zur Storungsteorie der Spektralzerlegung, Math. Ann. 123 (1951), 415–438.
[6] Lowner, K., Uber monotone Matrixfunktionen, Math. Z. 38 (1934), 177–216.
[7] Kubo, F., Ando, T., Means of positive linear operators, Math. Ann. 246 (1980), 205–224.
[8] Moslehian, M. S., Najafi, H., An extension of the Lowner–Heinz inequality, Linear Algebra Appl. 437 (2012), 2359–2365.
[9] Zuo, H., Duan, G., Some inequalities of operator monotone functions, J. Math. Inequal. 8 (4) (2014), 777–781.