Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2020_74_2_a0, author = {Ahmad, Owais}, title = {Construction of nonuniform periodic wavelet frames on {non-Archimedean} fields}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {1--17}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a0/} }
TY - JOUR AU - Ahmad, Owais TI - Construction of nonuniform periodic wavelet frames on non-Archimedean fields JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2020 SP - 1 EP - 17 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a0/ LA - en ID - AUM_2020_74_2_a0 ER -
Ahmad, Owais. Construction of nonuniform periodic wavelet frames on non-Archimedean fields. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 2, pp. 1-17. http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a0/
[1] Ahmad, O., Sheikh, N. A., Ali, M. A., Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in L2(K), Afrika Math. 31 (2020), 1145–1156.
[2] Ahmad, O., Sheikh, N. A., On Characterization of nonuniform tight wavelet frames on local fields, Anal. Theory Appl. 34 (2018), 135–146.
[3] Ahmad, O., Shah, F. A., Sheikh, N. A., Gabor frames on non-Archimedean fields, Int. J. Geom. Methods Mod. Phys. 15 (5) (2018), 1850079, 17 pp.
[4] Ahmad, O., Ahmad, N., Explicit construction of tight nonuniform framelet packets on local fields, Oper. Matrices (to appear).
[5] Ahmad, O., Ahmad, N., Construction of nonuniform wavelet frames on non-Archimedean fields, Math. Phy. Anal. Geom. (to appear).
[6] Benedetto, J. J., Benedetto, R. L., A wavelet theory for local fields and related groups, J. Geom. Anal. 14 (2004), 423–456.
[7] Christensen, O., An Introduction to Frames and Riesz Bases, Second Edition, Birkhauser, Boston, 2016.
[8] Daubechies, I., Han, B., Ron, A., Shen, Z., Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003), 1–46.
[9] Daubechies, I., Grossmann, A., Meyer, Y., Painless non-orthogonal expansions, J. Math. Phys. 27 (5) (1986), 1271–1283.
[10] Duffin, R. J., Shaeffer, A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366.
[11] Gabardo, J. P., Nashed, M., Nonuniform multiresolution analyses and spectral pairs, J. Funct. Anal. 158 (1998), 209–241.
[12] Gabardo, J. P., Yu, X., Wavelets associated with nonuniform multiresolution analysis and one-dimensional spectral pairs, J. Math. Anal. Appl. 323 (2006), 798–817.
[13] Jiang, H. K., Li, D. F., Jin, N., Multiresolution analysis on local fields, J. Math. Anal. Appl. 294 (2004), 523–532.
[14] Lebedeva, E. A., Prestin, J., Periodic wavelet frames and time-frequency localization, Appl. Comput. Harmon. Anal. 37 (2014), 347–359.
[15] Lu, D., Li, D., Construction of periodic wavelet frames with dilation matrix, Front. Math. China. 9 (2014), 111–134.
[16] Ramakrishnan, D., Valenza, R. J., Fourier Analysis on Number Fields, Graduate Texts in Mathematics 186, Springer-Verlag, New York, 1999.
[17] Ron, A., Shen, Z., Affine systems in L2(Rd): the analysis of the analysis operator, J. Funct. Anal. 148 (1997), 408–447.
[18] Shah, F. A., Ahmad, O., Jorgenson, P. E., Fractional wave packet frames in L2(R), J. Math. Phys. 59, 073509 (2018).
[19] Shah, F. A., Ahmad, O., Wave packet systems on local fields, J. Geom. Phys. 120 (2017), 5–18.
[20] Shah, F. A., Ahmad, O., Rahimi, A., Frames associated with shift invariant spaces on local fields, Filomat 32 (9)(2018), 3097–3110.
[21] Shah, F. A., Ahmad, O., Sheikh, N. A., Orthogonal Gabor systems on local fields, Filomat 31 (16) (2017), 5193–5201.
[22] Shah, F. A., Ahmad, O., Sheikh, N. A., Some new inequalities for wavelet frames on local fields, Anal. Theory Appl. 33 (2) (2017), 134–148.
[23] Shah, F. A., Debnath, L., Tight wavelet frames on local fields, Analysis 33 (2013), 293–307.
[24] Taibleson, M. H., Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ, 1975.
[25] Zhang, Z., Periodic wavelet frames, Adv. Comput. Math. 22 (2005), 165–180.
[26] Zhang, Z., Saito, N., Constructions of periodic wavelet frames using extension principles, Appl. Comput. Harmon. Anal. 27 (2009), 12–23.