Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_2_a8, author = {Kruk, {\L}ukasz}, title = {Stability of preemptive {EDF} queueing networks}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a8/} }
Kruk, Łukasz. Stability of preemptive EDF queueing networks. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2. http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a8/
[1] Billingsley, P., Probability and Measure, 2nd Edition, Wiley, New York, 1986.
[2] Bramson, M., Convergence to equilibria for fluid models of FIFO queueing networks, Queueing Syst. Theory Appl. 22 (1996), 5–45.
[3] Bramson, M., Convergence to equilibria for fluid models of head-of-the-line proportional processor sharing queueing networks, Queueing Syst. Theory Appl. 23 (1996), 1–26.
[4] Bramson, M., State space collapse with application to heavy traffic limits for multiclass queueing networks, Queueing Syst. Theory Appl. 30 (1998), 89–148.
[5] Bramson, M., Stability of earliest-due-date, first-served queueing networks, Queueing Syst. Theory Appl. 39 (2001), 79–102.
[6] Dai, J. G., On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models, Ann. Appl. Probab. 5 (1995), 49–77.
[7] Dai, J. G., Weiss, G., Stability and instability for fluid models of reentrant lines, Math. Oper. Res. 21 (1996), 115–134.
[8] Davis, M. H. A., Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models, Journal of the Royal Statistical Society. Series B 46 (1984), 353–388.
[9] Doytchinov, B., Lehoczky, J. P., Shreve, S. E., Real-time queues in heavy traffic with earliest-deadline-first queue discipline, Ann. Appl. Probab. 11 (2001), 332–379.
[10] Getoor, R. K., Transience and recurrence of Markov processes, Seminaire de Probabilites XIV 284, 397–409, Springer, New York, 1979.
[11] Kruk, Ł, Stability of two families of real-time queueing networks, Probab. Math. Stat. 28 (2008), 179–202.
[12] Kruk, Ł, Invariant states for fluid models of EDF networks: nonlinear lifting map, Probab. Math. Stat. 30 (2010), 289–315.
[13] Kruk, Ł, Lehoczky, J. P., Shreve, S. E., Yeung, S.-N., Earliest-deadline-first service in heavy traffic acyclic networks, Ann. Appl. Probab. 14 (2004), 1306–1352.
[14] Meyn, S. P., Down, D., Stability of generalized Jackson networks, Ann. Appl. Probab. 4 (1994), 124–148.
[15] Rybko, A. N., Stolyar, A. L., Ergodicity of stochastic processes describing the operations of open queueing networks, Probl. Inf. Transm. 28 (1992), 199–220.
[16] Williams, R. J., Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse, Queueing Syst. Theory Appl. 30 (1998), 27–88.
[17] Yeung, S.-N., Lehoczky, J. P., Real-time queueing networks in heavy traffic with EDF and FIFO queue discipline, working paper, Department of Statistics, Carnegie Mellon University.