Coefficient body for nonlinear resolvents
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2.

Voir la notice de l'article provenant de la source Library of Science

This paper is devoted to the study of families of so-called nonlinear resolvents. Namely, we construct polynomial transformations which map the closed unit polydisks onto the coefficient bodies for the resolvent families. As immediate applications of our results we present a covering theorem and a sharp estimate for the Schwarzian derivative at zero on the class of resolvents.
Keywords: Holomorphic function, infinitesimal generator, nonlinear resolvent, Schur parameter
@article{AUM_2019_73_2_a4,
     author = {Elin, Mark and Jacobzon, Fiana},
     title = {Coefficient body for nonlinear resolvents},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a4/}
}
TY  - JOUR
AU  - Elin, Mark
AU  - Jacobzon, Fiana
TI  - Coefficient body for nonlinear resolvents
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2019
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a4/
LA  - en
ID  - AUM_2019_73_2_a4
ER  - 
%0 Journal Article
%A Elin, Mark
%A Jacobzon, Fiana
%T Coefficient body for nonlinear resolvents
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2019
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a4/
%G en
%F AUM_2019_73_2_a4
Elin, Mark; Jacobzon, Fiana. Coefficient body for nonlinear resolvents. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2. http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a4/

[1] Berkson, E., Porta, H., Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101–115.

[2] Comtet, L., Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.

[3] Efraimidis, I., Vukotic, D., Applications of Livingston-type inequalities to the generalized Zalcman functional, Math. Nachr. 291 (2018), 1502–1513.

[4] Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems. Topics in univalent functions, functions equations and semigroup theory, Birkhauser, Basel, 2010.

[5] Elin, M., Shoikhet, D., Sugawa, T., Geometric properties of the nonlinear resolvent of holomorphic generators, J. Math. Anal. Appl. 483 (2020), Art. 123614.

[6] Faa di Bruno, F., Sullo sviluppo delle Funzioni, Annali di Scienze Matematiche e Fisiche 6 (1855), 479–480.

[7] Frabetti, A., Manchon, D., Five interpretations of Faa di Bruno’s formula, IRMA Lect. in Math. and Theor. Phys. 21 (K. Ebrahimi-Fard and F. Fauvet, eds.), Europ. Math. Soc. (2015), 91–148.

[8] Kim, S.-A., Sugawa, T., Invariant differential operators associated with a conformal metric, Michigan Math. J. 55 (2007), 459–479.

[9] Li, M., Sugawa, T., Schur parameters and the Caratheodory class, Results in Mathematics, accepted for publication.

[10] Ma, W., Minda, D., Hyperbolically convex functions, Ann. Math. Polon. 60 (1994), 81–100.

[11] Reich, S., Shoikhet, D., Metric domains, holomorphic mappings and nonlinear semigroups, Abstr. Appl. Anal. 3 (1998), 203–228.

[12] Reich, S., Shoikhet, D., Nonlinear Semigroups, Fixed Points, and the Geometry of Domains in Banach Spaces, World Scientific Publisher, Imperial College Press, London, 2005.

[13] Riordan, J., Combinatorial Identities, Robert E. Krieger Publishing Co., Huntington, NY, 1979.

[14] Schur, I., Methods in Operator Theory and Signal Processing, Operator Theory: Adv. and Appl. 18, Birkhauser Verlag, 1986.

[15] Shoikhet, D., Semigroups in Geometrical Function Theory, Kluwer, Dordrecht, 2001.

[16] Simon, B., Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, Colloquium Publications, Amer. Math. Society, 2005.