Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_2_a1, author = {Krajka, Andrzej and Rychlik, Zdzis{\l}aw and Wasiura-Ma\'slany, Joanna}, title = {On the almost sure convergence of randomly indexed maximum of random variables}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {91--104}, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a1/} }
TY - JOUR AU - Krajka, Andrzej AU - Rychlik, Zdzisław AU - Wasiura-Maślany, Joanna TI - On the almost sure convergence of randomly indexed maximum of random variables JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2019 SP - 91 EP - 104 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a1/ LA - en ID - AUM_2019_73_2_a1 ER -
%0 Journal Article %A Krajka, Andrzej %A Rychlik, Zdzisław %A Wasiura-Maślany, Joanna %T On the almost sure convergence of randomly indexed maximum of random variables %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2019 %P 91-104 %V 73 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a1/ %G en %F AUM_2019_73_2_a1
Krajka, Andrzej; Rychlik, Zdzisław; Wasiura-Maślany, Joanna. On the almost sure convergence of randomly indexed maximum of random variables. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2, pp. 91-104. http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a1/
[1] Aksomaitis, A., Transfer theorems in a max-scheme, Litovsk. Mat. Sb. 29 (2) (1989), 207–211 (Russian).
[2] Barndorff-Nielsen, O., On the limit distribution of the maximum of a random number of independent random variables, Acta. Math. Acad. Sci. Hungar. 11 (1964), 399–403.
[3] Berkes, I., Csaki, E., A universal result in almost sure central limit theory, Stoch. Proc. Appl. 94 (2001), 105–134.
[4] Brosamler, G. A., An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (1988), 561–574.
[5] Berman, S. M., Limiting distribution of the maximum in the sequence of dependent random variables, Ann. Math. Statist. 33 (1962), 894–908.
[6] Cheng, S., Peng, L., Qi, Y., Almost sure convergence in extreme value theory, Math. Nachr. 190 (1998), 43–50.
[7] Fahrner, I., Almost Sure Versions of Weak Limit Theorems, Shaker Verlag, Aachen, 2000.
[8] Fahrner, I., Stadmuller, U., On almost sure max-limit theorems, Statist. Probab. Lett. 37 (1998), 229–236.
[9] Galambos, J., The Asymptotic Theory of Extreme Order Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley Sons, New York–Chichester–Brisbane, 1978.
[10] Hormann, S., An extension of almost sure central limit theory, Statist. Probab. Lett. 76 (2006), 191–202.
[11] Jakubowski, A., Asymptotic Independent Representations for Sums and Order Statistics of Stationary Sequences, NCU Press publications, Toruń, 1991.
[12] Krajka, A., Wasiura, J., On the almost sure central limit theorem for randomly indexed sums, Math. Nachr. 282 (4) (2009), 569–580.
[13] Lacey, M. T., Philipp, W., A note on the almost sure central limit theorem, Statist. Probab. Lett. 9 (1990), 201–205.
[14] Leadbetter, M. R., Lindgren, G., Rootzen, H., Extremes and Related Properties of Random Sequences and Processes, Springer, Berlin, 1983.
[15] O’Brien, G. L., The maximum term of uniformly mixing stationary process, Z. Wahr. verw. Gebiete 30 (1974), 57–63.
[16] Robbins, H., The asymptotic distribution of the sums of a random number of random variables, Bull. Amer. Math. Soc. 54 (1948), 1151–1161.
[17] Resnick, S. I., Extreme Values. Regular Variation and Point Processes, Springer, 1987.
[18] Stadtmuller, U., Almost sure versions of distributional limit theorems for certain order statistics, Statist. Probab. Lett. 58 (2002), 413–426.
[19] Schatte, P., On strong version of the central limit theorem, Math. Nachr. 137 (1988), 249–256.