Some results on convex meromorphic functions
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we define a function F : D× D× D→ℂ in terms of f and show that ReF > 0 for all ζ,z,w ∈ D if and only if f belongs to the class of convex meromorphic functions.
Keywords: Univalent functions, convex meromorphic functions, starlike functions
@article{AUM_2019_73_1_a7,
     author = {Ucar, Faruk and Avci, Yusuf},
     title = {Some results on convex meromorphic functions},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a7/}
}
TY  - JOUR
AU  - Ucar, Faruk
AU  - Avci, Yusuf
TI  - Some results on convex meromorphic functions
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2019
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a7/
LA  - en
ID  - AUM_2019_73_1_a7
ER  - 
%0 Journal Article
%A Ucar, Faruk
%A Avci, Yusuf
%T Some results on convex meromorphic functions
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2019
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a7/
%G en
%F AUM_2019_73_1_a7
Ucar, Faruk; Avci, Yusuf. Some results on convex meromorphic functions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1. http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a7/

[1] Duren, P. L., Univalent Functions, Springer-Verlag, Berlin–Heidelberg–New York, 1983.

[2] Miller, J. E., Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80 (1980), 607–613.

[3] Gunning, R. C., Introduction to holomorphic functions of several variables, Vol. I, Function Theory, Wadsworth Brooks/Cole, Pacific Grove – California, 1990.

[4] Hormander, L., An introduction to complex analysis in several variables, Third Edition, North-Holland Publishing Co., Amsterdam, 1990.

[5] Ohno, R., A study on concave functions in geometric function theory, Ph.D. thesis, Tohoku University, 2014.

[6] Ruscheweyh, St., Sheill-Small, T., Hadamard Products of schlicht functions and the Polya–Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135.

[7] Schober, G., Univalent Functions – Selected Topics, Springer-Verlag, New York–Berlin, 1975.

[8] Sheil-Small, T., On convex univalent functions, J. London Math. Soc. 2 (1) (1969), 483–492.

[9] Yulin, Z., Owa, S., Some remarks on a class of meromorphic starlike functions, Indian J. Pure Appl. Math. 21 (9) (1990), 833–840.