Admissible classes of multivalent functions associated with an integral operator
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1.

Voir la notice de l'article provenant de la source Library of Science

In this paper we investigate some applications of the differential subordination and superordination of classes of admissible functions associated with an integral operator. Additionally, differential sandwich-type results are obtained.
Keywords: Analytic function, superordination, sandwich-type, admissible class, integral operator
@article{AUM_2019_73_1_a3,
     author = {Seoudy, Tamer and Aouf, Mohamed},
     title = {Admissible classes of multivalent functions associated with an integral operator},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a3/}
}
TY  - JOUR
AU  - Seoudy, Tamer
AU  - Aouf, Mohamed
TI  - Admissible classes of multivalent functions associated with an integral operator
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2019
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a3/
LA  - en
ID  - AUM_2019_73_1_a3
ER  - 
%0 Journal Article
%A Seoudy, Tamer
%A Aouf, Mohamed
%T Admissible classes of multivalent functions associated with an integral operator
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2019
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a3/
%G en
%F AUM_2019_73_1_a3
Seoudy, Tamer; Aouf, Mohamed. Admissible classes of multivalent functions associated with an integral operator. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1. http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a3/

[1] Aghalary, R., Ali, R. M., Joshi, S. B., Ravichandran, V., Inequalities for analytic functions defined by certain linear operator, Internat. J. Math. Sci. 4 (2) (2005), 267–274.

[2] Ali, R. M., Ravichandran, V., Seenivasagan, N., Differential subordination and superodination of analytic functions defined by the multiplier transformation, Math. Inequal. Appl. 12 (1) (2009), 123–139.

[3] Aouf, M. K., Inequalities involving certain integral operator, J. Math. Inequal. 2 (2) (2008), 537–547.

[4] Aouf, M. K., Hossen, H. M., Lashin, A. Y., An application of certain integral operators, J. Math. Anal. Appl. 248 (2) (2000), 475–481.

[5] Aouf, M. K., Seoudy, T. M., Differential subordination and superordination of analytic functions defined by an integral operator, European J. Pure Appl. Math. 3 (1) (2010), 26–44.

[6] Aouf, M. K., Seoudy, T. M., Differential subordination and superordination of analytic functions defined by certain integral operator, Acta Univ. Apulensis 24 (2010), 211–229.

[7] Bulboaca, T., Differential Subordinations and Superordinations. Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.

[8] Kim, Y. C., Srivastava, H. M., Inequalities involving certain families of integral and convolution operators, Math. Inequal. Appl. 7 (2) (2004), 227–234.

[9] Jung, T. B., Kim, Y. C., Srivastava, H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138–147.

[10] Miller, S. S., Mocanu, P. T., Differential Subordinations: Theory and Applications, Marcel Dekker, New York–Basel, 2000.

[11] Miller, S. S., Mocanu, P. T., Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (10) (2003), 815–826.

[12] Shams, S., Kulkarni, S. R., Jahangir, Jay M., Subordination properties for p-valent functions defined by integral operators, Internat. J. Math. Math. Sci. Vol. 2006, Article ID 94572, 1–3.