Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_1_a3, author = {Seoudy, Tamer and Aouf, Mohamed}, title = {Admissible classes of multivalent functions associated with an integral operator}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a3/} }
TY - JOUR AU - Seoudy, Tamer AU - Aouf, Mohamed TI - Admissible classes of multivalent functions associated with an integral operator JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2019 VL - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a3/ LA - en ID - AUM_2019_73_1_a3 ER -
%0 Journal Article %A Seoudy, Tamer %A Aouf, Mohamed %T Admissible classes of multivalent functions associated with an integral operator %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2019 %V 73 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a3/ %G en %F AUM_2019_73_1_a3
Seoudy, Tamer; Aouf, Mohamed. Admissible classes of multivalent functions associated with an integral operator. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1. http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a3/
[1] Aghalary, R., Ali, R. M., Joshi, S. B., Ravichandran, V., Inequalities for analytic functions defined by certain linear operator, Internat. J. Math. Sci. 4 (2) (2005), 267–274.
[2] Ali, R. M., Ravichandran, V., Seenivasagan, N., Differential subordination and superodination of analytic functions defined by the multiplier transformation, Math. Inequal. Appl. 12 (1) (2009), 123–139.
[3] Aouf, M. K., Inequalities involving certain integral operator, J. Math. Inequal. 2 (2) (2008), 537–547.
[4] Aouf, M. K., Hossen, H. M., Lashin, A. Y., An application of certain integral operators, J. Math. Anal. Appl. 248 (2) (2000), 475–481.
[5] Aouf, M. K., Seoudy, T. M., Differential subordination and superordination of analytic functions defined by an integral operator, European J. Pure Appl. Math. 3 (1) (2010), 26–44.
[6] Aouf, M. K., Seoudy, T. M., Differential subordination and superordination of analytic functions defined by certain integral operator, Acta Univ. Apulensis 24 (2010), 211–229.
[7] Bulboaca, T., Differential Subordinations and Superordinations. Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[8] Kim, Y. C., Srivastava, H. M., Inequalities involving certain families of integral and convolution operators, Math. Inequal. Appl. 7 (2) (2004), 227–234.
[9] Jung, T. B., Kim, Y. C., Srivastava, H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138–147.
[10] Miller, S. S., Mocanu, P. T., Differential Subordinations: Theory and Applications, Marcel Dekker, New York–Basel, 2000.
[11] Miller, S. S., Mocanu, P. T., Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (10) (2003), 815–826.
[12] Shams, S., Kulkarni, S. R., Jahangir, Jay M., Subordination properties for p-valent functions defined by integral operators, Internat. J. Math. Math. Sci. Vol. 2006, Article ID 94572, 1–3.