Some inequalities for maximum modulus of rational functions
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1, pp. 33-39.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we establish some inequalities for rational functions with prescribed poles and restricted zeros in the sup-norm on the unit circle in the complex plane. Generalizations and refinements of rational function inequalities of Govil, Li, Mohapatra and Rodriguez are obtained.
Keywords: Rational function, polynomial, poles, zeros
@article{AUM_2019_73_1_a0,
     author = {Mir, Abdullah},
     title = {Some inequalities for maximum modulus of rational functions},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     pages = {33--39},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a0/}
}
TY  - JOUR
AU  - Mir, Abdullah
TI  - Some inequalities for maximum modulus of rational functions
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2019
SP  - 33
EP  - 39
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a0/
LA  - en
ID  - AUM_2019_73_1_a0
ER  - 
%0 Journal Article
%A Mir, Abdullah
%T Some inequalities for maximum modulus of rational functions
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2019
%P 33-39
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a0/
%G en
%F AUM_2019_73_1_a0
Mir, Abdullah. Some inequalities for maximum modulus of rational functions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1, pp. 33-39. http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a0/

[1] Ankeny, N. C., Rivlin, T. J., On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849–852.

[2] Aziz, A., Dawood, Q. M., Inequalities for a polynomial and its derivatives, J. Approx. Theory 54 (1998), 306–313.

[3] Bernstein, S., Sur l’ordre de la meilleure approximation des functions continues par des polynomes de degre donne, Mem. Acad. R. Belg. 4 (1912), 1–103.

[4] Govil, N. K., Mohapatra, R. N., Inequalities for maximum modulus of rational functions with prescribed poles, in: Approximation Theory, Dekker, New York, 1998, 255–263.

[5] Lax, P. D., Proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509–513.

[6] Xin Li, A comparison inequality for rational functions, Proc. Amer. Math. Soc. 139 (2011), 1659–1665.

[7] Xin Li, Mohapatra, R. N., Rodriguez, R. S., Bernstein-type inequalities for rational functions with prescribed poles, J. London Math. Soc. 51 (1995), 523–531.