Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_1_a0, author = {Mir, Abdullah}, title = {Some inequalities for maximum modulus of rational functions}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {33--39}, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a0/} }
TY - JOUR AU - Mir, Abdullah TI - Some inequalities for maximum modulus of rational functions JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2019 SP - 33 EP - 39 VL - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a0/ LA - en ID - AUM_2019_73_1_a0 ER -
Mir, Abdullah. Some inequalities for maximum modulus of rational functions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1, pp. 33-39. http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a0/
[1] Ankeny, N. C., Rivlin, T. J., On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849–852.
[2] Aziz, A., Dawood, Q. M., Inequalities for a polynomial and its derivatives, J. Approx. Theory 54 (1998), 306–313.
[3] Bernstein, S., Sur l’ordre de la meilleure approximation des functions continues par des polynomes de degre donne, Mem. Acad. R. Belg. 4 (1912), 1–103.
[4] Govil, N. K., Mohapatra, R. N., Inequalities for maximum modulus of rational functions with prescribed poles, in: Approximation Theory, Dekker, New York, 1998, 255–263.
[5] Lax, P. D., Proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509–513.
[6] Xin Li, A comparison inequality for rational functions, Proc. Amer. Math. Soc. 139 (2011), 1659–1665.
[7] Xin Li, Mohapatra, R. N., Rodriguez, R. S., Bernstein-type inequalities for rational functions with prescribed poles, J. London Math. Soc. 51 (1995), 523–531.