Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2018_72_2_a6, author = {Sobolewski, Pawe{\l}}, title = {Products of {Toeplitz} and {Hankel} operators on the {Bergman} space in the polydisk}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {72}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a6/} }
TY - JOUR AU - Sobolewski, Paweł TI - Products of Toeplitz and Hankel operators on the Bergman space in the polydisk JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2018 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a6/ LA - en ID - AUM_2018_72_2_a6 ER -
Sobolewski, Paweł. Products of Toeplitz and Hankel operators on the Bergman space in the polydisk. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2. http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a6/
[1] Gonessa, J., Sheba, B., Toeplitz products on the vector weighted Bergman spaces, Acta Sci. Math. (Szeged) 80 (3-4) (2014), 511-530.
[2] Lu, Y., Liu, C., Toeplitz and Hankel products on Bergman spaces of the unit ball, Chin. Ann. Math. Ser. B 30 (3) (2009), 293-310.
[3] Lu, Y., Shang, S., Bounded Hankel products on the Bergman space of the polydisk, Canad. J. Math. 61 (1) (2009), 190-204.
[4] Miao, J., Bounded Toeplitz products on the weighted Bergman spaces of the unit ball, J. Math. Anal. Appl. 346 (1) (2008), 305-313.
[5] Michalska, M., Sobolewski, P., Bounded Toeplitz and Hankel products on the weighted Bergman spaces of the unit ball, J. Aust. Math. Soc. 99 (2) (2015), 237-249.
[6] Nazarov, F., A counter-example to Sarason’s conjecture, preprint. Available at http://www.math.msu.edu/~fedja/prepr.html.
[7] Pott, S., Strouse, E., Products of Toeplitz operators on the Bergman spaces \(A^2\), Algebra i Analiz 18 (1) (2006), 144-161 (English transl. in St. Petersburg Math. J. 18 (1) (2007), 105-118).
[8] Stroethoff, K., Zheng, D., Toeplitz and Hankel operators on Bergman spaces, Trans. Amer. Math. Soc. 329 (2) (1992), 773-794.
[9] Stroethoff, K., Zheng, D., Products of Hankel and Toeplitz operators on the Bergman space, J. Funct. Anal. 169 (1) (1999), 289-313.
[10] Stroethoff, K., Zheng, D., Invertible Toeplitz products, J. Funct. Anal. 195 (1) (2002), 48-70.
[11] Stroethoff, K., Zheng, D., Bounded Toeplitz products on the Bergman space of the polydisk, J. Math. Anal. Appl. 278 (1) (2003), 125-135.
[12] Stroethoff, K., Zheng, D., Bounded Toeplitz products on Bergman spaces of the unit ball, J. Math. Anal. Appl. 325 (1) (2007), 114-129.
[13] Stroethoff, K., Zheng, D., Bounded Toeplitz products on weighted Bergman spaces, J. Operator Theory 59 (2) (2008), 277-308.
[14] Hedenmalm, H., Korenblum, B., Zhu, K., Theory of Bergman Spaces, Springer-Verlag, New York, 2000.