Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2018_72_2_a5, author = {{\L}agodowski, Zbigniew}, title = {On the necessary condition for {Baum-Katz} type theorem for non-identically distributed and negatively dependent random fields}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {72}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a5/} }
TY - JOUR AU - Łagodowski, Zbigniew TI - On the necessary condition for Baum-Katz type theorem for non-identically distributed and negatively dependent random fields JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2018 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a5/ LA - en ID - AUM_2018_72_2_a5 ER -
%0 Journal Article %A Łagodowski, Zbigniew %T On the necessary condition for Baum-Katz type theorem for non-identically distributed and negatively dependent random fields %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2018 %V 72 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a5/ %G en %F AUM_2018_72_2_a5
Łagodowski, Zbigniew. On the necessary condition for Baum-Katz type theorem for non-identically distributed and negatively dependent random fields. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2. http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a5/
[1] Baum, L. E., Katz, M., Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), 108-123.
[2] Bulinski, A., Shashkin, A., Limit Theorems for Associated Random Fields and Related Systems, World Scientific Publishing, Singapore, 2007.
[3] Gut, A., Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices, Ann. Probability 6 (3) (1978), 469-482.
[4] Gut, A., Stadtmuller, U., An asymmetric Marcinkiewicz-Zygmund LLN for random fields, Statist. Probab. Lett. 79 (8) (2009), 1016-1020.
[5] Gut, A., Stadtmuller, U., On the Hsu-Robbins-Erdos-Spitzer-Baum-Katz theorem for random fields, J. Math. Anal. Appl. 387 (1) (2012), 447-463.
[6] Hsu, P. L., Robbins, H., Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 25-31.
[7] Klesov, O. I., The strong law of large numbers for multiple sums of independent identically distributed random variables, Matem. Zametki 38 (1985), 915-930 (English transl. in Math. Notes 38 (1986), 1006-1014).
[8] Klesov, O. I., Limit Theorems for Multi-Indexed Sums of Random Variables, Springer-Verlag, Berlin-Heidelberg, 2014.
[9] Łagodowski, Z. A., An approach to complete convergence theorems for dependent random fields via application of Fuk–Nagaev inequality, J. Math. Anal. Appl. 437 (2016), 380-395.
[10] Lehmann, E. L., Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153.
[11] Neveu, J., Discrete-Parameter Martingales, North-Holland, Amsterdam; American Elsevier, New York, 1975.