On the Courant bracket on couples of vector fields and \(p\)-forms
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2.

Voir la notice de l'article provenant de la source Library of Science

If m≥ p+1≥ 2 (or m=p≥ 3), all  natural bilinear  operators A transforming pairs of couples of vector fields and p-forms on m-manifolds M into couples of vector fields and p-forms on M are described. It is observed that  any natural skew-symmetric bilinear operator A as above coincides with the generalized Courant bracket up to three (two, respectively) real constants.
Keywords: Natural operator, vector field, p-form
@article{AUM_2018_72_2_a3,
     author = {Doupovec, Miroslav and Kurek, Jan and Mikulski, W{\l}odzimierz},
     title = {On the {Courant} bracket on couples of vector fields and \(p\)-forms},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a3/}
}
TY  - JOUR
AU  - Doupovec, Miroslav
AU  - Kurek, Jan
AU  - Mikulski, Włodzimierz
TI  - On the Courant bracket on couples of vector fields and \(p\)-forms
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2018
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a3/
LA  - en
ID  - AUM_2018_72_2_a3
ER  - 
%0 Journal Article
%A Doupovec, Miroslav
%A Kurek, Jan
%A Mikulski, Włodzimierz
%T On the Courant bracket on couples of vector fields and \(p\)-forms
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2018
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a3/
%G en
%F AUM_2018_72_2_a3
Doupovec, Miroslav; Kurek, Jan; Mikulski, Włodzimierz. On the Courant bracket on couples of vector fields and \(p\)-forms. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2. http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a3/

[1] Coimbra, A., Minasian, R., Triendl, H.,Waldram, D., Generalized geometry for string corrections, J. High Energy Phys. 2014 (11) (2014), 160.

[2] Courant, T. J., Dirac manifolds, Trans. Amer. Math. Soc. 319 (2) (1990), 631-661.

[3] Doupovec, M., Kurek, J., Lifts of tensor fields to the cotangent bundle, in: Differential Geometry and Applications (Brno, 1995), Masaryk University, Brno, 1996, 141-150.

[4] Doupovec, M., Kurek, J., Mikulski, W. M., The natural brackets on couples of vector fields and 1-forms, Turkish J. Math. 42 (4) (2018), 1853-1862.

[5] Dębecki, J., Linear liftings of skew symmetric tensor fields of type (1,2) to Weil bundles, Czechoslovak Math. J. 60(135) (4) (2010), 933-943.

[6] Gualtieri, M., Generalized complex geometry, Ann. of Math. (2) 174 (1) (2011), 75-123.

[7] Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. Math. 54 (3) (2003), 281-308.

[8] Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

[9] Kurek, J., Mikulski, W. M., The natural linear operators \(T^*\rightsquigarrow TT^{(r)}\), Colloq. Math. 95 (1) (2003), 37-47.

[10] Mikulski, W. M., Liftings of 1-forms to the linear r-tangent bundle, Arch. Math. (Brno) 31 (2) (1995), 97-111.